Skip to main content

Abstract

Although numerous techniques fulfill the basic functional definition of dewatering, they do so to widely varying degrees. It is important to keep this fact in mind when comparing different dewatering and/or drying devices. For example, sludge drying beds and evaporation lagoons can be used not only to dewater a particular sludge, but also to dry it to a solids concentration of more than 50–60%. Depending on the particular device involved, dewatered sludge from a mechanical device might vary from a wet, almost flowable form, to a harder and more friable form (1)–(5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. P. Sakellaropoulos, Drying and evaporation process, in Handbook of Environmental Engineering, Vol. 4, Chapter 8, L. K. Wang, and N. C. Pereira, (eds.), Humana Press, Inc. Totowa, NJ, 373–446 (1986).

    Google Scholar 

  2. US EPA, Process Design Manual for Sludge Treatment and Disposal. EPA-625/1-79-011, US Environmental Protection Agency, Washington, DC, September (1979).

    Google Scholar 

  3. US EPA, Innovative and Alternative Technology Assessment Manual. 430-/9-78-009, US Environmental Protection Agency, Washington, DC, February (1980).

    Google Scholar 

  4. US EPA, Design Manual: Dewatering Municipal Wastewater Sludge. EPA/625/1-87/014, US Environmental Protection Agency, Washington, DC, September, p. 193 (1987).

    Google Scholar 

  5. US EPA, Handbook: Septage Treatment and Disposal. EPA-625/6-84-009, US Environmental Protection Agency, Washington, DC, June, p. 300 (1984).

    Google Scholar 

  6. US EPA, Control of Air Emissions from Superfund Sites. EPA-625/R-92/012, US Environmental Protection Agency, Washington, DC, November, p. 146 (1992).

    Google Scholar 

  7. A. J. Buonicore and W. T. Davis, (eds.), Air Pollution Engineering Manual. Air and Waste Management Association. Van Nostrand Reinhold, NY (1992).

    Google Scholar 

  8. W. W. Eckenfelder, Jr and D. J. O’Connor, Biological Waste Treatment, Pergamon press, NY (1961).

    Google Scholar 

  9. W. W. Eckenfelder, Jr and D. L. Ford, Water Pollution Control, Pemberton Press, Jenkins Publishing Co., NY (1970).

    Google Scholar 

  10. W. R. Neubauer, Waste alum sludge treatment. J. Am. Water Works Assoc., 60(7), 819–826 (1968).

    CAS  Google Scholar 

  11. R. S. Burd, A Study of Sludge Handling and Disposal, US Dept. of the Interior, Federal Water Pollution Control Administration, Publish. WP-20-4 (1968).

    Google Scholar 

  12. Editors, Sludge drying, sewage Ind. wastes, 31(2), 239 (1959).

    Google Scholar 

  13. Editor, Recommended Standards for Sewage Works, a Report of the-Committee of the Great Lakes-Upper Mississippi River Board of State Sanitary Engineers, Health Education Service, Albany, NY (2005).

    Google Scholar 

  14. T. R. Haseltine, Measurement of sludge drying bed performance, Sewage Ind. Wastes, 23(9), 1065 (1951).

    CAS  Google Scholar 

  15. L. W. Vankleeck, Sewage works guide, Wastes Engineering, NY (1961).

    Google Scholar 

  16. J. F. Vogler and W. Rundolfs, Factors involved in the drainage of white-water sludge. Proc. of the 5th Purdue Industrial Waste Conference, p. 305 (1949).

    Google Scholar 

  17. J. W. McLarren, Canadian Municipal Utility, 23, 51 (1961).

    Google Scholar 

  18. M. Bowers, Sewage Ind. Wastes, 29(7), 835 (1957).

    Google Scholar 

  19. W. J. Weber, Jr., Physicochemical Processes for Water Quality Control, Wiley Interscience, NY (1972).

    Google Scholar 

  20. R. L. Carr, Jr., Water Sewage Works, 114, R-64 (1967).

    Google Scholar 

  21. W. A. Sperry, Sewage Works J., 13(5), 855 (1941).

    CAS  Google Scholar 

  22. R. S. Gale, Filtration Separation, 5(2), 133 (1968).

    CAS  Google Scholar 

  23. WPCF, Operation of Wastewater Treatment Plants, Manual of Practice, No. 11, Water Pollution Control Federation, Washington, DC (1961).

    Google Scholar 

  24. J. K. Adams, Sewage Works J., 15(4), 704 (1943).

    Google Scholar 

  25. J. T. Burke and M. T. Dajani, Organic polymers in treatment of industrial wastes. Proceeding of 21st Ind. Waste Conference, Purdue University, Ext. Scr. 121, 303 (1966).

    Google Scholar 

  26. O. O. Cofie, S. Agbottah, M. Strauss, H. Esseku, A. Montangero, E. Awuah and D. Kone. Solid liquid separation of faecal sludge using drying beds in Ghana. Water Research 40(1), p. 75–82 (2006).

    Article  CAS  Google Scholar 

  27. S. Kelman and C. P. Priesing, Polyelectrolyte flocculation-sand bed dewatering, paper presented at The Michigan WPCA Conference, June (1964).

    Google Scholar 

  28. ASCE, Advances in sludge disposal in the period from October 1, 1954 to February 1, 1960, American Society of Civil Engineers San. Engr. Div., 88(SA2), 13 (1962).

    Google Scholar 

  29. W. T. South, Water Sewage Works, 105, 347 (1958).

    Google Scholar 

  30. C. W. Randall, Water Sewage Works, 116, 373 (1969).

    Google Scholar 

  31. C. W. Randall and C. T. Koch, J. Water Pollut. Control Fed., 4, R215 (1969).

    Google Scholar 

  32. E. R. Lynd, Sewage Ind. Wastes, 28(5), 697 (1956).

    Google Scholar 

  33. R. B. Gauntlett and R. F. Pakcham, Public Works, 102, 90 (1971).

    Google Scholar 

  34. J. B. Crockford and V. R. Sparham, Developments to upgrade settlement tank performance, screening and sludge dewatering associated with industrial wastewater treatment. Proceedings of 27th Purdue Industrial Waste Conference, May (1972).

    Google Scholar 

  35. V. H. Lewin, The Surveyor, 121(3680), 1521 (1962).

    Google Scholar 

  36. L. A. Lubow, J. N. Carolina Sec. AWWA, 16, 118 (1941).

    Google Scholar 

  37. J. Harrison and H. R. Bungay, Water Sewage Works, 115, 217 (1968).

    CAS  Google Scholar 

  38. T. Furman, Sewage Ind. Wastes, 26(6), 745 (1954).

    CAS  Google Scholar 

  39. Editor, Treatment and Disposal of Sewage Sludge, Ministry of Housing and Local Government, London (1954).

    Google Scholar 

  40. US EPA, Areawide Assessment Procedures Manual, Volume III. Municipal Environmental Research Laboratory. EPA 600/9-76-014, US Environmental Protection Agency, Cincinnati, Ohio 45268, July (1976).

    Google Scholar 

  41. US EPA, Construction Costs for Municipal Wastewater Treatment Plants. Office of Water Program Operations. US Environmental Protection Agency, Washington, DC, MCD 37. January (1978).

    Google Scholar 

  42. Culp, Wesner, and Culp, Inc. Cost and Performance Handbook Sludge Handling Processes. Wastewater Treatment and Reuse Seminar, South Lake Tahoe, CA, October (1977).

    Google Scholar 

  43. W. A. Feige, E. T. Oppelt, and J. F. Kreissl, An Alternative Septage Treatment Method: Lime Stabilization/Sand Bed Dewatering. US Environmental Protection Agency, Washington, DC, Report No. 600/2-75-036, NTIS No. PB 245816/4BE, September (1975).

    Google Scholar 

  44. B. Jamonet, T. Laedevich, and T.W. Harris, Treatment of Sludge from Septic Tanks. Societe per l’industria dell’Ossigeno e di Altra Gas, Italy and Air Liquide, France (1980).

    Google Scholar 

  45. A. J. Condren, Pilot-Scale Evaluations of Septage Treatment Alternatives. US Environmental Protection Agency, Washington, DC, Report No. 600/2-78-164, NTIS No. PB-288415/AS, September (1978).

    Google Scholar 

  46. D. R. Perrin, Physical and Chemical Treatment of Septic Tank, Sludge. M.S. Thesis, University of Vermont, February, 1974.

    Google Scholar 

  47. A. A. Shaboo, Selected Septage Conditioning: Enhancing Settling and Dewatering. M.S. Thesis, University of Lowell, MA, 1978.

    Google Scholar 

  48. T. L. Crowe, Dewatering of Septage by Vacuum Filtration. M.S. Thesis, Clarkson College of Technology, Potsdam, NY, 1975.

    Google Scholar 

  49. W. T. South, Asphalt paved beds in Salt Lake City. Water and Sewage Works, 105 (1958).

    Google Scholar 

  50. C. W. Randall, Are paved drying beds effective for dewatering digested sludge?, Water and Sewage Works, 116 (1969).

    Google Scholar 

  51. C. W. Randall and C. T. Koch, Dewatering characteristics of aerobically digested sludge. J. Water Pollut. Control Fed., 41 (1969).

    Google Scholar 

  52. I. A. Cooper, Design experiences with vacuum sludge dewatering beds. 6th Annual Technical Seminar, WATERS, Inc., Denver, Colorado, 1981.

    Google Scholar 

  53. IDI Infilco Degremont, Inc., DeHydro System Brochure. IDI Infilco Degremont, Inc., Richmond, VA, (1981).

    Google Scholar 

  54. K. Imhoff and G. M. Fair, Sewage Treatment. John Wiley & Sons, NY (1956).

    Google Scholar 

  55. WPCF, Sewage Treatment Plant Design. Water Pollution Control Federation, Washington DC. Manual of Operation No. 8 (1959).

    Google Scholar 

  56. I. S. Turovskiy and P. K. Mathal. Wastewater Sludge Processing. Wiley Publisher, NY. 250 pages, July (2006).

    Google Scholar 

  57. T. R. Haseltine, Measurement of sludge drying bed performance, Sewage Ind. Wastes, 23, 1065 (1951).

    CAS  Google Scholar 

  58. WEF. Wastewater technology buyer’s guide: natural systems, Water Environ. Fed., 14, 94–95 (2002).

    Google Scholar 

  59. PE. 2000–2001 buyer’s guide: Sludge dewatering management and treatment, Pollut. Eng., 32(12), 110–111 (2000).

    Google Scholar 

  60. L. K. Wang, The State-of-the-art Technologies for Water Treatment and Management. United Nations Industrial Development Organization (UNIDO), Vienna, Austria. UNIDO Training Manual No. 8-8-95, p. 145, August (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Wang, L.K., Li, Y., Shammas, N.K., Sakellaropoulos, G.P. (2007). Drying Beds. In: Wang, L.K., Shammas, N.K., Hung, YT. (eds) Biosolids Treatment Processes. Handbook of Environmental Engineering, vol 6. Humana Press. https://doi.org/10.1007/978-1-59259-996-7_13

Download citation

Publish with us

Policies and ethics