Skip to main content

Pigmentation, DNA Repair, and Candidate Genes

The Risk of Cutaneous Malignant Melanoma in a Mediterranean Population

  • Chapter
From Melanocytes to Melanoma

Abstract

This chapter summarizes the results of a case-control and a family study of melanoma we have conducted in a Mediterranean population of Southern Emilia-Romagna and Northern Marche regions of Italy. This area includes approx 1 million people, with a wide range of pigmentary phenotypes, who are often exposed to intense sun exposure in the popular sea resorts of the region. The role of pigmentation, DNA repair, and major candidate genes for melanoma has been investigated in this population and is discussed here. As the incidence and mortality of melanoma continue to increase in Southern European countries once considered at low risk for melanoma, a better comprehension of the etiology of this disease can have considerable clinical and preventive impact on melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jemal A, Devesa SS, Fears TR, Hartge P. Cancer surveillance series: changing patterns of cutaneous malignant melanoma mortality rates among whites in the United States. J Natl Cancer Inst 2000; 92(10):811–818.

    Article  PubMed  CAS  Google Scholar 

  2. Dennis LK. Analysis of the melanoma epidemic, both apparent and real: data from the 1973 through 1994 surveillance, epidemiology, and end results program registry. Arch Dermatol 1999; 135(3):275–280.

    Article  PubMed  CAS  Google Scholar 

  3. Serraino D, Fratino L, Gianni W, Campisi C, Pietropaolo M, Trimarco G et al. Epidemiological aspects of cutaneous malignant melanoma (review). Oncol Rep 1998; 5(4):905–909.

    PubMed  CAS  Google Scholar 

  4. Marrett LD, Nguyen HL, Armstrong BK. Trends in the incidence of cutaneous malignant melanoma in New South Wales, 1983–1996. Int J Cancer 2001; 92(3):457–462.

    Article  PubMed  CAS  Google Scholar 

  5. Ferlay J, Bray S, Sankila R, Parkin D. EUCAN: cancer incidence, mortality and prevalence in the European Union 1996. Version 3.1 ed. Lyon: IARC Press, 1999.

    Google Scholar 

  6. de Vries E, Boniol M, Dore JF, Coebergh JW. Lower incidence rates but thicker melanomas in Eastern Europe before 1992: a comparison with Western Europe. Eur J Cancer 2004; 40(7):1045–1052.

    PubMed  Google Scholar 

  7. Muir C, Waterhouse J, Mack T, Powell J, Whelan S. Cancer incidence in five continents. 1 ed. Lyon: IARC Press, 1987.

    Google Scholar 

  8. Parkin D, Muir C, Whelan S, Gao Y, Ferlay J, Powell J. Cancer incidence in five continents. 2 ed. Lyon: IARC Press, 1992.

    Google Scholar 

  9. Parkin D, Whelan S, Ferlay J, Raymond L, Young J. Cancer Incidence in Five Continents. Vol VII. Lyon, France: International Agency for Research on Cancer, 1997.

    Google Scholar 

  10. Ferlay J, Bary S, Pisani P, Parkin D. GLOBOCAN 2000: Cancer incidence, mortality and prevalence worldwide. Version 1 ed. Lyon: IARC Press, 2001.

    Google Scholar 

  11. Landi MT, Baccarelli A, Calista D, Pesatori A, Fears T, Tucker MA et al. Combined risk factors for melanoma in a Mediterranean population. Br J Cancer 2001; 85(9):1304–1310.

    Article  PubMed  CAS  Google Scholar 

  12. Landi MT, Calista D, Landi G, Bernucci I, Bertazzi PA, Clark WH, Jr. et al. Clinical characteristics of 20 Italian melanoma-prone families. Arch Dermatol 1999; 135(12):1554–1555.

    Article  PubMed  CAS  Google Scholar 

  13. Cristofolini M, Franceschi S, Tasin L, Zumiani G, Piscioli F, Talamini R et al. Risk factors for cutaneous malignant melanoma in a northern Italian population. Int J Cancer 1987; 39(2):150–154.

    Article  PubMed  CAS  Google Scholar 

  14. Scotto J, Fears T, Fraumeni J Jr. Solar radiation. In: Schottenfeld D, Fraumeni JF Jr., editors. Cancer epidemiology and prevention. New York: Oxford University Press, 1996:355–372.

    Google Scholar 

  15. Landi MT, Baccarelli A, Calista D, Fears TR, Landi G. Glucocorticoid use and melanoma risk. Int J Cancer 2001; 94(2):302–303.

    Article  PubMed  CAS  Google Scholar 

  16. Langley RG, Sober AJ. A clinical review of the evidence for the role of ultraviolet radiation in the etiology of cutaneous melanoma. Cancer Invest 1997; 15(6):561–567.

    PubMed  CAS  Google Scholar 

  17. Bohr VA. DNA repair fine structure and its relations to genomic instability. Carcinogenesis 1995; 16(12):2885–2892.

    Article  PubMed  CAS  Google Scholar 

  18. Kadekaro AL, Kanto H, Kavanagh R, Abdel-Malek ZA. Significance of the melanocortin 1 receptor in regulating human melanocyte pigmentation, proliferation, and survival. Ann N Y Acad Sci 2003; 994:359–365.

    Article  PubMed  CAS  Google Scholar 

  19. Athas WF, Hedayati MA, Matanoski GM, Farmer ER, Grossman L. Development and field-test validation of an assay for DNA repair in circulating human lymphocytes. Cancer Res 1991; 51(21):5786–5793.

    PubMed  CAS  Google Scholar 

  20. Landi MT, Baccarelli A, Tarone RE, Pesatori A, Tucker MA, Hedayati M et al. DNA repair, dysplastic nevi, and sunlight sensitivity in the development of cutaneous malignant melanoma. J Natl Cancer Inst 2002; 94(2):94–101.

    PubMed  CAS  Google Scholar 

  21. Elwood JM, Jopson J. Melanoma and sun exposure: an overview of published studies. Int J Cancer 1997; 73(2):198–203.

    Article  PubMed  CAS  Google Scholar 

  22. MacKie RM. Incidence, risk factors and prevention of melanoma. Eur J Cancer 1998; 34(suppl 3):S3–S6.

    Article  PubMed  Google Scholar 

  23. Armstrong B, English D. Cutaneous malignant melanoma. In: Schottenfeld D, Fraumeni J Jr, editors. CAncer epidemilogy and prevention. New York: Oxford University Press, 1996:1282–1312.

    Google Scholar 

  24. Weinstock MA, Colditz GA, Willett WC, Stampfer MJ, Bronstein BR, Mihm MC, Jr. et al. Melanoma and the sun: the effect of swimsuits and a “healthy” tan on the risk of nonfamilial malignant melanoma in women. Am J Epidemiol 1991; 134(5):462–470.

    PubMed  CAS  Google Scholar 

  25. Hansson J, Loow H. Normal reactivation of plasmid DNA inactivated by UV irradiation by lymphocytes from individuals with hereditary dysplastic naevus syndrome. Melanoma Res 1994; 4(3):163–167.

    Article  PubMed  CAS  Google Scholar 

  26. Perera MI, Um KI, Greene MH, Waters HL, Bredberg A, Kraemer KH. Hereditary dysplastic nevus syndrome: lymphoid cell ultraviolet hypermutability in association with increased melanoma susceptibility. Cancer Res 1986; 46(2):1005–1009.

    PubMed  CAS  Google Scholar 

  27. Seetharam S, Waters HL, Seidman MM, Kraemer KH. Ultraviolet mutagenesis in a plasmid vector replicated in lymphoid cells from patient with the melanoma-prone disorder dysplastic nevus syndrome. Cancer Res 1989; 49(21):5918–5921.

    PubMed  CAS  Google Scholar 

  28. Baccarelli A, Calista D, Minghetti P, Marinelli B, Albetti B, Tseng T et al. XPD gene polymorphism and host characteristics in the association with cutaneous malignant melanoma risk. Br J Cancer 2004; 90(2):497–502.

    Article  PubMed  CAS  Google Scholar 

  29. Cockburn M, Hamilton A, Mack T. Recall bias in self-reported melanoma risk factors. Am J Epidemiol 2001; 153(10):1021–1026.

    Article  PubMed  CAS  Google Scholar 

  30. Takiwaki H. Measurement of skin color: practical application and theoretical considerations. J Med Invest 1998; 44(3–4):121–126.

    PubMed  CAS  Google Scholar 

  31. Fullerton A, Fischer T, Lahti A, Wilhelm KP, Takiwaki H, Serup J. Guidelines for measurement of skin colour and erythema. A report from the Standardization Group of the European Society of Contact Dermatitis. Contact Dermatitis 1996; 35(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  32. Andreassi L, Flori L. Practical applications of cutaneous colorimetry. Clin Dermatol 1995; 13(4):369–373.

    Article  PubMed  CAS  Google Scholar 

  33. Kollias N. The physical basis of skin color and its evaluation. Clin Dermatol 1995; 13(4):361–367.

    Article  PubMed  CAS  Google Scholar 

  34. Takiwaki H, Overgaard L, Serup J. Comparison of narrow-band reflectance spectrophotometric and tristimulus colorimetric measurements of skin color. Twenty-three anatomical sites evaluated by the Dermaspectrometer and the Chroma Meter CR-200. Skin Pharmacol 1994; 7(4):217–225.

    PubMed  CAS  Google Scholar 

  35. Billmeyer F, Saltzman M. Principles of color technology. New York: Wiley-Interscience, 1981.

    Google Scholar 

  36. Weatherall IL, Coombs BD. Skin color measurements in terms of CIELAB color space values. J Invest Dermatol 1992; 99(4):468–473.

    Article  PubMed  CAS  Google Scholar 

  37. Bataille V, Bykov VJ, Sasieni P, Harulow S, Cuzick J, Hemminki K. Photoadaptation to ultraviolet (UV) radiation in vivo: photoproducts in epidermal cells following UVB therapy for psoriasis. Br J Dermatol 2000; 143(3):477–483.

    Article  PubMed  CAS  Google Scholar 

  38. Brenner AV, Lubin JH, Calista D, Landi MT. Instrumental measurements of skin color and skin ultraviolet light sensitivity and risk of cutaneous malignant melanoma: a case-control study in an Italian population. Am J Epidemiol 2002; 156(4):353–362.

    Article  PubMed  Google Scholar 

  39. Valverde P, Healy E, Jackson I, Rees JL, Thody AJ. Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat Genet 1995; 11(3):328–330.

    Article  PubMed  CAS  Google Scholar 

  40. Box NF, Wyeth JR, O’Gorman LE, Martin NG, Sturm RA. Characterization of melanocyte stimulating hormone receptor variant alleles in twins with red hair. Hum Mol Genet 1997; 6(11):1891–1897.

    Article  PubMed  CAS  Google Scholar 

  41. Smith R, Healy E, Siddiqui S, Flanagan N, Steijlen PM, Rosdahl I et al. Melanocortin 1 receptor variants in an Irish population. J Invest Dermatol 1998; 111(1):119–122.

    Article  PubMed  CAS  Google Scholar 

  42. Palmer JS, Duffy DL, Box NF, Aitken JF, O’Gorman LE, Green AC et al. Melanocortin-1 receptor polymorphisms and risk of melanoma: is the association explained solely by pigmentation phenotype? Am J Hum Genet 2000; 66(1):176–186.

    Article  PubMed  CAS  Google Scholar 

  43. Flanagan N, Healy E, Ray A, Philips S, Todd C, Jackson IJ et al. Pleiotropic effects of the melanocortin 1 receptor (MC1R) gene on human pigmentation. Hum Mol Genet 2000; 9(17):2531–2537.

    Article  PubMed  CAS  Google Scholar 

  44. Bastiaens M, ter Huurne J, Gruis N, Bergman W, Westendorp R, Vermeer BJ et al. The melanocortin-1-receptor gene is the major freckle gene. Hum Mol Genet 2001; 10(16):1701–1708.

    Article  PubMed  CAS  Google Scholar 

  45. Sturm RA. Skin colour and skin cancer — MC1R, the genetic link. Melanoma Res 2002; 12(5):405–416.

    Article  PubMed  CAS  Google Scholar 

  46. Calista D, Goldstein AM, Landi MT. Familial melanoma aggregation in north-eastern Italy. J Invest Dermatol 2000; 115(4):764–765.

    Article  PubMed  CAS  Google Scholar 

  47. Kamb A, Shattuck-Eidens D, Eeles R, Liu Q, Gruis NA, Ding W et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat Genet 1994; 8(1):23–26.

    Article  PubMed  CAS  Google Scholar 

  48. Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 1994; 368(6473):753–756.

    Article  PubMed  CAS  Google Scholar 

  49. Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 1993; 366(6456):704–707.

    Article  PubMed  CAS  Google Scholar 

  50. Serrano M, Gomez-Lahoz E, DePinho RA, Beach D, Bar-Sagi D. Inhibition of ras-induced proliferation and cellular transformation by p16INK4. Science 1995; 267(5195):249–252.

    Article  PubMed  CAS  Google Scholar 

  51. Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 1998; 92(6):725–734.

    Article  PubMed  CAS  Google Scholar 

  52. Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 1998; 92(6):713–723.

    Article  PubMed  CAS  Google Scholar 

  53. Goldstein AM, Fraser MC, Struewing JP, Hussussian CJ, Ranade K, Zametkin DP et al. Increased risk of pancreatic cancer in melanoma-prone kindreds with p16INK4 mutations. N Engl J Med 1995; 333(15):970–974.

    Article  PubMed  CAS  Google Scholar 

  54. Borg A, Sandberg T, Nilsson K, Johannsson O, Klinker M, Masback A et al. High frequency of multiple melanomas and breast and pancreas carcinomas in CDKN2A mutation-positive melanoma families. J Natl Cancer Inst 2000; 92(15):1260–1266.

    Article  PubMed  CAS  Google Scholar 

  55. Rulyak SJ, Brentnall TA, Lynch HT, Austin MA. Characterization of the neoplastic phenotype in the familial atypical multiple-mole melanoma-pancreatic carcinoma syndrome. Cancer 2003; 98(4):798–804.

    Article  PubMed  CAS  Google Scholar 

  56. Vasen HF, Gruis NA, Frants RR, Der Velden PA, Hille ET, Bergman W. Risk of developing pancreatic cancer in families with familial atypical multiple mole melanoma associated with a specific 19 deletion of p16 (p16-Leiden). Int J Cancer 2000; 87(6):809–811.

    Article  PubMed  CAS  Google Scholar 

  57. Ghiorzo P, Ciotti P, Mantelli M, Heouaine A, Queirolo P, Rainero ML et al. Characterization of ligurian melanoma families and risk of occurrence of other neoplasia. Int J Cancer 1999; 83(4):441–448.

    Article  PubMed  CAS  Google Scholar 

  58. Randerson-Moor JA, Harland M, Williams S, Cuthbert-Heavens D, Sheridan E, Aveyard J et al. A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family. Hum Mol Genet 2001; 10(1):55–62.

    Article  PubMed  CAS  Google Scholar 

  59. Rizos H, Puig S, Badenas C, Malvehy J, Darmanian AP, Jimenez L et al. A melanoma-associated germline mutation in exon 1beta inactivates p14ARF. Oncogene 2001; 20(39):5543–5547.

    Article  PubMed  CAS  Google Scholar 

  60. Bishop DT, Demenais F, Goldstein AM, Bergman W, Bishop JN, Bressac-de Paillerets B et al. Geographical variation in the penetrance of CDKN2A mutations for melanoma. J Natl Cancer Inst 2002; 94(12):894–903.

    PubMed  CAS  Google Scholar 

  61. Loo JC, Liu L, Hao A, Gao L, Agatep R, Shennan M et al. Germline splicing mutations of CDKN2A predispose to melanoma. Oncogene 2003; 22(41):6387–6394.

    Article  PubMed  CAS  Google Scholar 

  62. Platz A, Ringborg U, Lagerlof B, Lundqvist E, Sevigny P, Inganas M. Mutational analysis of the CDKN2 gene in metastases from patients with cutaneous malignant melanoma. Br J Cancer 1996; 73(3):344–348.

    PubMed  CAS  Google Scholar 

  63. Glendening JM, Flores JF, Walker GJ, Stone S, Albino AP, Fountain JW. Homozygous loss of the p15INK4B gene (and not the p16INK4 gene) during tumor progression in a sporadic melanoma patient. Cancer Res 1995; 55(23):5531–5535.

    PubMed  CAS  Google Scholar 

  64. Wolfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Klehmann-Hieb E et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 1995; 269(5228):1281–1284.

    Article  PubMed  CAS  Google Scholar 

  65. Brotherton DH, Dhanaraj V, Wick S, Brizuela L, Domaille PJ, Volyanik E et al. Crystal structure of the complex of the cyclin D-dependent kinase Cdk6 bound to the cell-cycle inhibitor p19INK4d. Nature 1998; 395(6699):244–250.

    Article  PubMed  CAS  Google Scholar 

  66. Zuo L, Weger J, Yang Q, Goldstein AM, Tucker MA, Walker GJ et al. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 1996; 12(1):97–99.

    Article  PubMed  CAS  Google Scholar 

  67. Soufir N, Avril MF, Chompret A, Demenais F, Bombled J, Spatz A et al. Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group. Hum Mol Genet 1998; 7(2):209–216.

    Article  PubMed  CAS  Google Scholar 

  68. Holland EA, Schmid H, Kefford RF, Mann GJ. CDKN2A (P16(INK4a)) and CDK4 mutation analysis in 131 Australian melanoma probands: effect of family history and multiple primary melanomas. Genes Chromosomes Cancer 1999; 25(4):339–348.

    Article  PubMed  CAS  Google Scholar 

  69. Suriano G, Oliveira C, Ferreira P, Machado JC, Bordin MC, pt Wever O et al. Identification of CDH1 germline missense mutations associated with functional inactivation of the E-cadherin protein in young gastric cancer probands. Hum Mol Genet 2003; 12(5):575–582.

    Article  PubMed  CAS  Google Scholar 

  70. Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 1995; 378(6559):789–792.

    Article  PubMed  CAS  Google Scholar 

  71. The Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst 1999; 91:1310–1316.

    Article  Google Scholar 

  72. Landi MT, Goldstein AM, Tsang S, Munroe D, Modi WS, Ter-Minassian M et al. Genetic susceptibility in familial melanoma from North Eastern Italy. J Med Genet 2004; 41:557–566.

    Article  PubMed  CAS  Google Scholar 

  73. Mantelli M, Barile M, Ciotti P, Ghiorzo P, Lantieri F, Pastorino L et al. High prevalence of the G101W germline mutation in the CDKN2A (P16(ink4a)) gene in 62 Italian malignant melanoma families. Am J Med Genet 2002; 107(3):214–221.

    Article  PubMed  Google Scholar 

  74. Ciotti P, Struewing JP, Mantelli M, Chompret A, Avril MF, Santi PL et al. A single genetic origin for the G101W CDKN2A mutation in 20 melanoma-prone families. Am J Hum Genet 2000; 67(2):311–319.

    Article  PubMed  CAS  Google Scholar 

  75. Fargnoli MC, Chimenti S, Keller G, Soyer HP, Dal P, V, Hofler H et al. CDKN2a/p16INK4a mutations and lack of p19ARF involvement in familial melanoma kindreds. J Invest Dermatol 1998; 111(6):1202–1206.

    Article  PubMed  CAS  Google Scholar 

  76. Della Torre G, Pasini B, Frigerio S, Donghi R, Rovini D, Delia D et al. CDKN2A and CDK4 mutation analysis in Italian melanoma-prone families: functional characterization of a novel CDKN2A germ line mutation. Br J Cancer 2001; 85(6):836–844.

    Article  PubMed  Google Scholar 

  77. Guerois R, Nielsen JE, Serrano L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 2002; 320(2):369–387.

    Article  PubMed  CAS  Google Scholar 

  78. Gilis D, Rooman M. PoPMuSiC, an algorithm for predicting protein mutant stability changes: application to prion proteins. Protein Eng 2000; 13(12):849–856.

    Article  PubMed  CAS  Google Scholar 

  79. Sunyaev S, Lathe W, III, Bork P. Integration of genome data and protein structures: prediction of protein folds, protein interactions and “molecular phenotypes” of single nucleotide polymorphisms. Curr Opin Struct Biol 2001; 11(1):125–130.

    Article  PubMed  CAS  Google Scholar 

  80. Miller JF. Assay of β-galactosidase. Experiments in Molecular Genetics. Cold Spring Harbour: Cold Spring Harbour Press, 1972:352–355.

    Google Scholar 

  81. Monzon J, Liu L, Brill H, Goldstein AM, Tucker MA, From L et al. CDKN2A mutations in multiple primary melanomas. N Engl J Med 1998; 338(13):879–887.

    Article  PubMed  CAS  Google Scholar 

  82. Kefford RF, Newton Bishop JA, Bergman W, Tucker MA. Counseling and DNA testing for individuals perceived to be genetically predisposed to melanoma: A consensus statement of the Melanoma Genetics Consortium. J Clin Oncol 1999; 17(10):3245–3251.

    PubMed  CAS  Google Scholar 

  83. Gillanders E, Hank Juo SH, Holland EA, Jones M, Nancarrow D, Freas-Lutz D et al. Localization of a novel melanoma susceptibility locus to 1p22. Am J Hum Genet 2003; 73(2):301–313.

    Article  PubMed  CAS  Google Scholar 

  84. Bale SJ, Dracopoli NC, Tucker MA, Clark WH, Jr., Fraser MC, Stanger BZ et al. Mapping the gene for hereditary cutaneous malignant melanoma-dysplastic nevus to chromosome 1p. N Engl J Med 1989; 320(21):1367–1372.

    Article  PubMed  CAS  Google Scholar 

  85. Goldstein AM, Dracopoli NC, Ho EC, Fraser MC, Kearns KS, Bale SJ et al. Further evidence for a locus for cutaneous malignant melanoma-dysplastic nevus (CMM/DN) on chromosome 1p, and evidence for genetic heterogeneity. Am J Hum Genet 1993; 52(3):537–550.

    PubMed  CAS  Google Scholar 

  86. Greene MH. The genetics of hereditary melanoma and nevi. 1998 update. Cancer 1999; 86(suppl 11):2464–2477.

    Article  PubMed  CAS  Google Scholar 

  87. Goldstein AM, Goldin LR, Dracopoli NC, Clark WH, Jr., Tucker MA. Two-locus linkage analysis of cutaneous malignant melanoma/dysplastic nevi. Am J Hum Genet 1996; 58(5):1050–1056.

    PubMed  CAS  Google Scholar 

  88. Goldstein AM, Falk RT, Fraser MC, Dracopoli NC, Sikorski RS, Clark WH, Jr. et al. Sun-related risk factors in melanoma-prone families with CDKN2A mutations. J Natl Cancer Inst 1998; 90(9):709–711.

    Article  PubMed  CAS  Google Scholar 

  89. van der Velden PA, Sandkuijl LA, Bergman W, Pavel S, van Mourik L, Frants RR et al. Melanocortin-1 receptor variant R151C modifies melanoma risk in Dutch families with melanoma. Am J Hum Genet 2001; 69(4):774–779.

    Article  PubMed  Google Scholar 

  90. Box NF, Duffy DL, Chen W, Stark M, Martin NG, Sturm RA etal. MC1R genotype modifies risk of melanoma in families segregating CDKN2A mutations. Am J Hum Genet 2001; 69(4):765–773.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, N.J.

About this chapter

Cite this chapter

Landi, M.T. (2006). Pigmentation, DNA Repair, and Candidate Genes. In: Hearing, V.J., Leong, S.P.L. (eds) From Melanocytes to Melanoma. Humana Press. https://doi.org/10.1007/978-1-59259-994-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-994-3_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-459-3

  • Online ISBN: 978-1-59259-994-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics