Skip to main content

The Multiple Roles of the Oncogenic Protein SKI in Human Malignant Melanoma

  • Chapter
From Melanocytes to Melanoma
  • 1272 Accesses

Abstract

Cellular localization, association with different protein partners, and posttranslational modifications can dramatically change protein function. SKI and the highly homologous protein snoN are potent repressors of transforming growth factor-β signaling through their association with the Smad proteins. In fact, SKI can act as molecular switch converting the Smad proteins from an activating to a repressing entity on chromatin. SKI also plays additional roles in melanomas: in association with the LIM protein FHL2 activates β-catenin signaling, a pathway associated with cancer progression. This chapter reviews the transcriptional co-repressor and co-activator activities of SKI and discusses their biological significance for melanoma tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Colmenares C, Stavnezer E. The ski oncogene induces muscle differentiation in quail embryo cells. Cell 1989;59:293–303.

    Article  PubMed  CAS  Google Scholar 

  2. Cohen SB, Zheng G, Heyman HC, Stavnezer E. Heterodimers of the SnoN and Ski oncoproteins form preferentially over homodimers and are more potent transforming agents. Nucleic Acids Res 1999;27:1006–1014.

    Article  PubMed  CAS  Google Scholar 

  3. Charge SB, Brack AS, Hughes SM. Aging-related satellite cell differentiation defect occurs prematurely after Ski-induced muscle hypertrophy. Am J Physiol Cell Physiol 2002;283:C1228–C1241.

    PubMed  CAS  Google Scholar 

  4. He J, Tegen SB, Krawitz AR, Martin GS, Luo K. The transforming activity of Ski and SnoN is dependent on their ability to repress the activity of Smad proteins. J Biol Chem 2003;278:30,540–30,547.

    Article  PubMed  CAS  Google Scholar 

  5. Reed JA, Bales E, Xu W, Okan NA, Bandyopadhyay D, Medrano EE. Cytoplasmic localization of the oncogenic protein ski in human cutaneous melanomas in vivo: functional implications for transforming growth factor Beta signaling. Cancer Res 2001;61:8074–8078.

    PubMed  CAS  Google Scholar 

  6. Fukuchi M, Nakajima M, Fukai Y, et al. Increased expression of c-Ski as a co-repressor in transforming growth factor-beta signaling correlates with progression of esophageal squamous cell carcinoma. Int J Cancer 2004;108:818–824.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang F, Lundin M, Ristimaki A, et al. Ski-related novel protein N (SnoN), a negative controller of transforming growth factor-beta signaling, is a prognostic marker in estrogen receptor-positive breast carcinomas. Cancer Res 2003;63:5005–5010.

    PubMed  CAS  Google Scholar 

  8. Stavnezer E, Gerhard DS, Binari RC, Balazs I. Generation of transforming viruses in cultures of chicken fibroblasts infected with an avian leukosis virus. J Virol 1981;39:920–934.

    PubMed  CAS  Google Scholar 

  9. Kaufman CD, Martinez-Rodriguez G, Hackett PB Jr. Ectopic expression of c-ski disrupts gastrulation and neural patterning in zebrafish. Mech Dev 2000;95:147–162.

    Article  PubMed  CAS  Google Scholar 

  10. da Graca LS, Zimmerman KK, Mitchell MC, et al. DAF-5 is a Ski oncoprotein homolog that functions in a neuronal TGF beta pathway to regulate C. elegans dauer development. Development 2004;131:435–446.

    Article  PubMed  CAS  Google Scholar 

  11. Tarapore P, Richmond C, Zheng G, et al. DNA binding and transcriptional activation by the Ski oncoprotein mediated by interaction with NFI. Nucleic Acids Res 1997;25:3895–3903.

    Article  PubMed  CAS  Google Scholar 

  12. Nagase T, Mizuguchi G, Nomura N, Ishizaki R, Ueno Y, Ishii S. Requirement of protein co-factor for the DNA-binding function of the human ski proto-oncogene product. Nucleic Acids Res 1990;18:337–343.

    Article  PubMed  CAS  Google Scholar 

  13. Nagase T, Nomura N, Ishii S. Complex formation between proteins encoded by the ski gene family. J Biol Chem 1993;268:13,710–13,716.

    PubMed  CAS  Google Scholar 

  14. Heyman HC, Stavnezer E. A carboxyl-terminal region of the ski oncoprotein mediates homodimerization as well as heterodimerization with the related protein SnoN. J Biol Chem 1994;269:26,996–27,003.

    PubMed  CAS  Google Scholar 

  15. Sutrave P, Copeland TD, Showalter SD, Hughes SH. Characterization of chicken c-ski oncogene products expressed by retrovirus vectors. Mol Cell Biol 1990;10:3137–3144.

    PubMed  CAS  Google Scholar 

  16. Zheng G, Blumenthal KM, Ji Y, Shardy DL, Cohen SB, Stavnezer E. High affinity dimerization by Ski involves parallel pairing of a novel bipartite alpha-helical domain. J Biol Chem 1997;272:31,855–31,864.

    Article  PubMed  CAS  Google Scholar 

  17. Zheng G, Teumer J, Colmenares C, Richmond C, Stavnezer E. Identification of a core functional and structural domain of the v-Ski oncoprotein responsible for both transformation and myogenesis. Oncogene 1997;15:459–471.

    Article  PubMed  CAS  Google Scholar 

  18. Colmenares C, Sutrave P, Hughes SH, Stavnezer E. Activation of the c-ski oncogene by overexpression. J Virol 1991;65:4929–4935.

    PubMed  CAS  Google Scholar 

  19. Lyons GE, Micales BK, Herr MJ, et al. Protooncogene c-ski is expressed in both proliferating and postmitotic neuronal populations. Dev Dyn 1994;201:354–365.

    PubMed  CAS  Google Scholar 

  20. Pearson-White S, Crittenden R. Proto-oncogene Sno expression, alternative isoforms and immediate early serum response. Nucleic Acids Res 1997;25:2930–2937.

    Article  PubMed  CAS  Google Scholar 

  21. Berk M, Desai SY, Heyman HC, Colmenares C. Mice lacking the ski proto-oncogene have defects in neurulation, craniofacial, patterning, and skeletal muscle development. Genes Dev 1997;11:2029–2039.

    PubMed  CAS  Google Scholar 

  22. Colmenares C, Heilstedt HA, Shaffer LG, et al. Loss of the SKI proto-oncogene in individuals affected with 1p36 deletion syndrome is predicted by strain-dependent defects in Ski-/- mice. Nat Genet 2001;30:106–109.

    Article  PubMed  CAS  Google Scholar 

  23. Shinagawa T, Dong HD, Xu M, Maekawa T, Ishii S. The sno gene, which encodes a component of the histone deacetylase complex, acts as a tumor suppressor in mice. EMBO J 2000;19:2280–2291.

    Article  PubMed  CAS  Google Scholar 

  24. Chen D, Xu W, Bales E, et al. SKI activates Wnt/beta-catenin signaling in human melanoma. Cancer Res 2003;63:6626–6634.

    PubMed  CAS  Google Scholar 

  25. Shinagawa T, Dong HD, Xu M, Maekawa T, Ishii S. The sno gene, which encodes a component of the histone deacetylase complex, acts as a tumor suppressor in mice. EMBO J 2000;19:2280–2291.

    Article  PubMed  CAS  Google Scholar 

  26. Shinagawa T, Nomura T, Colmenares C, Ohira M, Nakagawara A, Ishii S. Increased susceptibility to tumorigenesis of ski-deficient heterozygous mice. Oncogene 2001;20:8100–8108.

    Article  PubMed  CAS  Google Scholar 

  27. Dahl R, Kieslinger M, Beug H, Hayman MJ. Transformation of hematopoietic cells by the Ski oncoprotein involves repression of retinoic acid receptor signaling. Proc Natl Acad Sci USA 1998;95:11,187–11,192.

    Article  PubMed  CAS  Google Scholar 

  28. Tokitou F, Nomura T, Khan MM, et al. Viral ski inhibits retinoblastoma protein (Rb)-mediated transcriptional repression in a dominant negative fashion. J Biol Chem 1999;274:4485–4488.

    Article  PubMed  CAS  Google Scholar 

  29. Kokura K, Kaul SC, Wadhwa R, et al. The Ski protein family is required for MeCP2-mediated transcriptional repression. J Biol Chem 2001;276:34,115–34,121.

    Article  PubMed  CAS  Google Scholar 

  30. Kaghad M, Bonnet H, Yang A, et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 1997;90:809–819.

    Article  PubMed  CAS  Google Scholar 

  31. Fumagalli S, Doneda L, Nomura N, Larizza L. Expression of the c-ski proto-oncogene in human melanoma cell lines. Melanoma Res 1993;3:23–27.

    Article  PubMed  CAS  Google Scholar 

  32. Xu W, Angelis K, Danielpour D, et al. Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type beta transforming growth factor. Proc Natl Acad Sci USA 2000;97:5924–5929.

    Article  PubMed  CAS  Google Scholar 

  33. Jepsen K, Rosenfeld MG. Biological roles and mechanistic actions of co-repressor complexes. J Cell Sci 2002;115:689–698.

    PubMed  CAS  Google Scholar 

  34. Alland L, Muhle R, Hou H Jr, et al. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 1997;387:49–55.

    Article  PubMed  CAS  Google Scholar 

  35. Nomura T, Khan MM, Kaul SC, et al. Ski is a component of the histone deacetylase complex required for transcriptional repression by Mad and thyroid hormone receptor. Genes Dev 1999;13:412–423.

    PubMed  CAS  Google Scholar 

  36. Ueki N, Hayman MJ. Direct interaction of Ski with either Smad3 or Smad4 is necessary and sufficient for Ski-mediated repression of transforming growth factor-beta signaling. J Biol Chem 2003;278:32,489–32,492.

    Article  PubMed  CAS  Google Scholar 

  37. Massague J, Chen YG. Controlling TGF-beta signaling. Genes Dev 2000;14:627–644.

    PubMed  CAS  Google Scholar 

  38. Piek E, Heldin CH, ten Dijke P. Specificity, diversity, and regulation in TGF-beta superfamily signaling. FASEB J 1999;13:2105–2124.

    PubMed  CAS  Google Scholar 

  39. Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001;29:117–129.

    Article  PubMed  CAS  Google Scholar 

  40. Nicol R, Stavaezer E. Transcriptional repression by v-Ski and c-Ski mediated by a specific DNAbinding site. J Biol Chem 1998;273:3588–3597.

    Article  PubMed  CAS  Google Scholar 

  41. Zawel L, Dai JL, Buckhaults P, et al. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell 1998;1:611–617.

    Article  PubMed  CAS  Google Scholar 

  42. Luo K, Stroschein SL, Wang W, et al. The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. Genes Dev 1999;13:2196–2206.

    Article  PubMed  CAS  Google Scholar 

  43. Sun Y, Liu X, Eaton EN, Lane WS, Lodish HF, Weinberg RA. Interaction of the Ski oncoprotein with Smad3 regulates TGF-beta signaling. Mol Cell 1999;4:499–509.

    Article  PubMed  CAS  Google Scholar 

  44. Akiyoshi S, Inoue H, Hanai J, et al. c-Ski acts as a transcriptional co-repressor in transforming growth factor-beta signaling through interaction with smads. J Biol Chem 1999;274:35,269–35,277.

    Article  PubMed  CAS  Google Scholar 

  45. Moustakas A, Pardali K, Gaal A, Heldin CH. Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunol Lett 2002;82:85–91.

    Article  PubMed  CAS  Google Scholar 

  46. Prunier C, Pessah M, Ferrand N, Seo SR, Howe P, Atfi A. The oncoprotein Ski acts as an antagonist of transforming growth factor-beta signaling by suppressing Smad2 phosphorylation. J Biol Chem 2003;278:26,249–26,257.

    Article  PubMed  CAS  Google Scholar 

  47. Kokura K, Kim H, Shinagawa T, Khan MM, Nomura T, Ishii S. The Ski-binding protein C184M negatively regulates tumor growth factor-beta signaling by sequestering the Smad proteins in the cytoplasm. J Biol Chem 2003;278:20,133–20,139.

    Article  PubMed  CAS  Google Scholar 

  48. Xiao Z, Liu X, Lodish HF. Importin beta mediates nuclear translocation of Smad 3. J Biol Chem 2000;275:23,425–23,428.

    Article  PubMed  CAS  Google Scholar 

  49. Lai A, Kennedy BK, Barbie DA, et al. RBP1 recruits the mSIN3-histone deacetylase complex to the pocket of retinoblastoma tumor suppressor family proteins found in limited discrete regions of the nucleus at growth arrest. Mol Cell Biol 2001;21:2918–2932.

    Article  PubMed  CAS  Google Scholar 

  50. Prathapam T, Kuhne C, Banks L. Skip interacts with the retinoblastoma tumor suppressor and inhibits its transcriptional repression activity. Nucleic Acids Res 2002;30:5261–5268.

    Article  PubMed  CAS  Google Scholar 

  51. Yang FC, Merlino G, Chin L. Genetic dissection of melanoma pathways in the mouse. Semin Cancer Biol 2001;11:261–268.

    Article  PubMed  CAS  Google Scholar 

  52. Bardeesy N, Bastian BC, Hezel A, Pinkel D, DePinho RA, Chin L. Dual inactivation of RB and p53 pathways in RAS-induced melanomas. Mol Cell Biol 2001;21:2144–2153.

    Article  PubMed  CAS  Google Scholar 

  53. Tietze MK, Chin L. Murine models of malignant melanoma. Mol Med Today 2000;6:408–410.

    Article  PubMed  CAS  Google Scholar 

  54. Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 2003;278:4035–4040.

    Article  PubMed  CAS  Google Scholar 

  55. Ballestar E, Paz MF, Valle L, et al. Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. EMBO J 2003;22:6335–6345.

    Article  PubMed  CAS  Google Scholar 

  56. Ferbeyre G, de Stanchina E, Querido E, Baptiste N, Prives C, Lowe SW. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev 2000;14:2015–2027.

    PubMed  CAS  Google Scholar 

  57. Mallette FA, Goumard S, Gaumont-Leclerc MF, Moiseeva O, Ferbeyre G. Human fibroblasts require the Rb family of tumor suppressors, but not p53, for PML-induced senescence. Oncogene 2004;23:91–99.

    Article  PubMed  CAS  Google Scholar 

  58. Gurrieri C, Capodieci P, Bernardi R, et al. Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J Natl Cancer Inst 2004;96:269–279.

    Article  PubMed  CAS  Google Scholar 

  59. Bernardi R, Pandolfi PP. Role of PML and the PML-nuclear body in the control of programmed cell death. Oncogene 2003;22:9048–9057.

    Article  PubMed  CAS  Google Scholar 

  60. Dorsky RI, Moon RT, Raible DW. Control of neural crest cell fate by the Wnt signalling pathway. Nature 1998;396:370–373.

    Article  PubMed  CAS  Google Scholar 

  61. Conacci-Sorrell M, Zhurinsky J, Ben Ze’ev A. The cadherin-catenin adhesion system in signaling and cancer. J Clin Invest 2002;109:987–991.

    Article  PubMed  CAS  Google Scholar 

  62. Willert K, Nusse R. Beta-catenin: a key mediator of Wnt signaling. Curr Opin Genet Dev 1998;8:95–102.

    Article  PubMed  CAS  Google Scholar 

  63. Rubinfeld B, Robbins P, El Gamil M, Albert I, Porfiri E, Polakis P. Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science 1997;275:1790–1792.

    Article  PubMed  CAS  Google Scholar 

  64. Demunter A, Libbrecht L, Degreef H, Wolf-Peeters C, van den Oord JJ. Loss of membranous expression of beta-catenin is associated with tumor progression in cutaneous melanoma and rarely caused by exon 3 mutations. Mod Pathol 2002;15:454–461.

    Article  PubMed  Google Scholar 

  65. Chen D, Xu W, Bales E, et al. SKI activates Wnt/beta-catenin signaling in human melanoma. Cancer Res 2003;63:6626–6634.

    PubMed  CAS  Google Scholar 

  66. Martin B, Schneider R, Janetzky S, et al. The LIM-only protein FHL2 interacts with ta-catenin and promotes differentiation of mouse myoblasts. J Cell Biol 2002;159:113–122.

    Article  PubMed  CAS  Google Scholar 

  67. Wei Y, Renard CA, Labalette C, et al. Identification of the LIM protein FHL2 as a coactivator of betacatenin. J Biol Chem 2003;278:5188–5194.

    Article  PubMed  CAS  Google Scholar 

  68. Schmeichel KL, Beckerle MC. Molecular dissection of a LIM domain. Mol Biol Cell 1997;8:219–230.

    PubMed  CAS  Google Scholar 

  69. Dawid IB, Breen JJ, Toyama R. LIM domains: multiple roles as adapters and functional modifiers in protein interactions. Trends Genet 1998;14:156–162.

    Article  PubMed  CAS  Google Scholar 

  70. McGill GG, Horstmann M, Widlund HR, et al. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 2002;109:707–718.

    Article  PubMed  CAS  Google Scholar 

  71. Conacci-Sorrell ME, Ben Yedidia T, Shtutman M, Feinstein E, Einat P, Ben Ze’ev A. Nr-CAM is a target gene of the beta-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes Dev 2002;16:2058–2072.

    Article  PubMed  CAS  Google Scholar 

  72. Stone JG, Spirling LI, Richardson MK. The neural crest population responding to endothelin-3 in vitro includes multipotent cells. J Cell Sci 1997;110:1673–1682.

    PubMed  CAS  Google Scholar 

  73. Shih IM, Herlyn M. Autocrine and paracrine roles for growth factors in melanoma. In Vivo 1994;8:113–123.

    PubMed  CAS  Google Scholar 

  74. Holbrook NJ, Fornace AJ. Response to adversity: molecular control of gene activation following genotoxic stress. New Biol 1991;3:825–833.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, N.J.

About this chapter

Cite this chapter

Chen, D., Lin, Q., Mian, I.S., Reed, J., Medrano, E.E. (2006). The Multiple Roles of the Oncogenic Protein SKI in Human Malignant Melanoma. In: Hearing, V.J., Leong, S.P.L. (eds) From Melanocytes to Melanoma. Humana Press. https://doi.org/10.1007/978-1-59259-994-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-994-3_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-459-3

  • Online ISBN: 978-1-59259-994-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics