Skip to main content

Central Integration of Peripheral Signals in Regulation of Energy Homeostasis

  • Chapter
Obesity and Diabetes

Abstract

The growing epidemic of obesity, a disease state emerging from an imbalance between energy intake and energy expenditure (EE), has recently attracted the attention of many researchers, leading to efforts to investigate and characterize the mechanisms underlying energy homeostasis. As a result, there has been an explosion of research in the area and the discovery of an ever-increasing number of molecules, that play an active role in normal physiology and pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lynch RM, Tompkins LS, Brooks HL, et al. Localization of glucokinase gene expression in the rat brain. Diabetes 2000;49(5):693–700.

    PubMed  CAS  Google Scholar 

  2. Akabayashi A, Zaia CT, Silva I, et al. Neuropeptide Y in the arcuate nucleus is modulated by alterations in glucose utilization. Brain Res 1993;621(2):343–348.

    PubMed  CAS  Google Scholar 

  3. Muroya S, Yada T, Shioda S, Takigawa M. Glucose-sensitive neurons in the rat arcuate nucleus contain neuropeptide Y. Neurosci Lett 1999;264(1–3):113–116.

    PubMed  CAS  Google Scholar 

  4. Burdyga G, Spiller D, Morris R, et al. Expression of the leptin receptor in rat and human nodose ganglion neurones. Neuroscience 2002;109(2):339–347.

    PubMed  CAS  Google Scholar 

  5. Moriarty P, Dimaline R, Thompson DG, Dockray GJ. Characterization of cholecystokininA and cholecystokininB receptors expressed by vagal afferent neurons. Neuroscience 1997;79(3):905–913.

    PubMed  CAS  Google Scholar 

  6. Barsh GS, Schwartz MW. Genetic approaches to studying energy balance: perception and integration. Nat Rev Genet 2002;3(8):589–600.

    PubMed  CAS  Google Scholar 

  7. Horvath TL, Diano S, Tschop M. Brain circuits regulating energy homeostasis. Neuroscientist 2004;10(3):235–246.

    PubMed  CAS  Google Scholar 

  8. Kalra SP, Dube MG, Pu S, et al. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 1999;20(1):68–100.

    PubMed  CAS  Google Scholar 

  9. Saper CB, Chou TC, Elmquist JK. The need to feed: homeostatic and hedonic control of eating. Neuron 2002;36(2):199–211.

    PubMed  CAS  Google Scholar 

  10. Berthoud HR. Multiple neural systems controlling food intake and body weight. Neurosci Biobehav Rev 2002;26(4):393–428.

    PubMed  Google Scholar 

  11. Allen YS, Adrian TE, Allen JM, et al. Neuropeptide Y distribution in the rat brain. Science 1983;221(4613):877–879.

    PubMed  CAS  Google Scholar 

  12. Hillebrand JJ, de Wied D, Adan RA. Neuropeptides, food intake and body weight regulation: a hypothalamic focus. Peptides 2002;23(12):2283–2306.

    PubMed  CAS  Google Scholar 

  13. Sawchenko PE, Pfeiffer SW. Ultrastructural localization of neuropeptide Y and galanin immunoreactivity in the paraventricular nucleus of the hypothalamus in the rat. Brain Res 1988;474(2):231–245.

    PubMed  CAS  Google Scholar 

  14. Hu Y, Bloomquist BT, Cornfield LJ, et al. Identification of a novel hypothalamic neuropeptide Y receptor associated with feeding behavior. J Biol Chem 1996;271(42):26,315–26,319.

    PubMed  CAS  Google Scholar 

  15. Shiraishi T, Oomura Y, Sasaki K, Wayner MJ. Effects of leptin and orexin-A on food intake and feeding related hypothalamic neurons. Physiol Behav 2000;71(3–4):251–261.

    PubMed  CAS  Google Scholar 

  16. Krysiak R, Obuchowicz E, Herman ZS. Interactions between the neuropeptide Y system and the hypothalamic-pituitary-adrenal axis. Eur J Endocrinol 1999;140(2):130–136.

    PubMed  CAS  Google Scholar 

  17. Batterham RL, Cowley MA, Small CJ, et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 2002;418(6898):650–654.

    PubMed  CAS  Google Scholar 

  18. Nakazato M, Murakami N, Date Y, et al. A role for ghrelin in the central regulation of feeding. Nature 2001;409(6817):194–198.

    PubMed  CAS  Google Scholar 

  19. Akabayashi A, Watanabe Y, Wahlestedt C, et al. Hypothalamic neuropeptide Y, its gene expression and receptor activity: relation to circulating corticosterone in adrenalectomized rats. Brain Res 1994;665(2):201–212.

    PubMed  CAS  Google Scholar 

  20. McKibbin PE, Cotton SJ, McCarthy HD, Williams G. The effect of dexamethasone on neuropeptide Y concentrations in specific hypothalamic regions. Life Sci 1992;51(16):1301–1307.

    PubMed  CAS  Google Scholar 

  21. Stanley BG, Lanthier D, Chin AS, Leibowitz SF. Suppression of neuropeptide Y-elicited eating by adrenalectomy or hypophysectomy: reversal with corticosterone. Brain Res 1989;501(1):32–36.

    PubMed  CAS  Google Scholar 

  22. Tempel DL, Leibowitz SF. Adrenal steroid receptors: interactions with brain neuropeptide systems in relation to nutrient intake and metabolism. J Neuroendocrinol 1994;6(5):479–501.

    PubMed  CAS  Google Scholar 

  23. Giraudo SQ, Kotz CM, Grace MK, et al. Rat hypothalamic NPY mRNA and brown fat uncoupling protein mRNA after high-carbohydrate or high-fat diets. Am J Physiol 1994;266(5 Pt 2):R1578–R1583.

    PubMed  CAS  Google Scholar 

  24. Wang J, Akabayashi A, Dourmashkin J, et al. Neuropeptide Y in relation to carbohydrate intake, corticosterone and dietary obesity. Brain Res 1998;802(1–2):75–88.

    PubMed  CAS  Google Scholar 

  25. Welch CC, Kim EM, Grace MK, et al. Palatability-induced hyperphagia increases hypothalamic Dynorphin peptide and mRNA levels. Brain Res 1996;721(1–2):126–131.

    PubMed  CAS  Google Scholar 

  26. Campfield LA, Smith FJ. Blood glucose dynamics and control of meal initiation: a pattern detection and recognition theory. Physiol Rev 2003;83(1):25–58.

    PubMed  CAS  Google Scholar 

  27. Campfield LA, Smith FJ, Rosenbaum M, Hirsch J. Human eating: evidence for a physiological basis using a modified paradigm. Neurosci Biobehav Rev 1996;20(1):133–137.

    PubMed  CAS  Google Scholar 

  28. Billington CJ, Briggs JE, Grace M, Levine AS. Effects of intracerebroventricular injection of neuropeptide Y on energy metabolism. Am J Physiol 1991;260(2 Pt 2):R321–R327.

    PubMed  CAS  Google Scholar 

  29. Erickson JC, Clegg KE, Palmiter RD. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature 1996;381(6581):415–421.

    PubMed  CAS  Google Scholar 

  30. Bannon AW, Seda J, Carmouche M, et al. Behavioral characterization of neuropeptide Y knockout mice. Brain Res 2000;868(1):79–87.

    PubMed  CAS  Google Scholar 

  31. Baskin DG, Hahn TM, Schwartz MW. Leptin sensitive neurons in the hypothalamus. Horm Metab Res 1999;31(5):345–350.

    PubMed  CAS  Google Scholar 

  32. Broberger C, Johansen J, Johansson C, et al. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci USA 1998;95(25):15,043–15,048.

    PubMed  CAS  Google Scholar 

  33. Small CJ, Kim MS, Stanley SA, et al. Effects of chronic central nervous system administration of agouti-related protein in pair-fed animals. Diabetes 2001;50(2):248–254.

    PubMed  CAS  Google Scholar 

  34. Ghilardi N, Ziegler S, Wiestner A, et al. Defective STAT signaling by the leptin receptor in diabetic mice. Proc Natl Acad Sci USA 1996;93(13):6231–6235.

    PubMed  CAS  Google Scholar 

  35. Kim MS, Small CJ, Stanley SA, et al. The central melanocortin system affects the hypothalamopituitary thyroid axis and may mediate the effect of leptin. J Clin Invest 2000;105(7):1005–1011.

    PubMed  CAS  Google Scholar 

  36. Chen P, Li C, Haskell-Luevano C, et al. Altered expression of agouti-related protein and its colocalization with neuropeptide Y in the arcuate nucleus of the hypothalamus during lactation. Endocrinology 1999;140(6):2645–2650.

    PubMed  CAS  Google Scholar 

  37. Hahn TM, Breininger JF, Baskin DG, Schwartz MW. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci 1998;1(4):271, 272.

    PubMed  CAS  Google Scholar 

  38. Mizuno TM, Mobbs CV. Hypothalamic agouti-related protein messenger ribonucleic acid is inhibited by leptin and stimulated by fasting. Endocrinology 1999;140(2):814–817.

    PubMed  CAS  Google Scholar 

  39. Karatayv O, Chang GQ, Davydova Z, Wang J, Leibowitz SF. Circulating glucose and relation to hypothalamic peptides involved in eating and body weight. Paper presented at the SFN 33rd Annual Meeting, New Orleans, November 8–12, 2003.

    Google Scholar 

  40. Wirth MM, Giraudo SQ. Agouti-related protein in the hypothalamic paraventricular nucleus: effect on feeding. Peptides 2000;21(9):1369–1375.

    PubMed  CAS  Google Scholar 

  41. Qian S, Chen H, Weingarth D, et al. Neither agouti-related protein nor neuropeptide Y is critically required for the regulation of energy homeostasis in mice. Mol Cell Biol 2002;22(14):5027–5035.

    PubMed  CAS  Google Scholar 

  42. Tritos NA, Maratos-Flier E. Two important systems in energy homeostasis: melanocortins and melanin-concentrating hormone. Neuropeptides 1999;33(5):339–349.

    PubMed  CAS  Google Scholar 

  43. Bahjaoui-Bouhaddi M, Fellmann D, Griffond B, Bugnon C. Insulin treatment stimulates the rat melanin-concentrating hormone-producing neurons. Neuropeptides 1994;27(4):251–258.

    PubMed  CAS  Google Scholar 

  44. Toshinai K, Mondal MS, Nakazato M, et al. Upregulation of Ghrelin expression in the stomach upon fasting, insulin-induced hypoglycemia, and leptin administration. Biochem Biophys Res Commun 2001;281(5):1220–1225.

    PubMed  CAS  Google Scholar 

  45. Sergeev VG, Akmaev IG. Effects of blockers of carbohydrate and lipid metabolism on expression of mRNA of some hypothalamic neuropeptides. Bull Exp Biol Med 2000;130(8):766–768.

    PubMed  CAS  Google Scholar 

  46. Sergeyev V, Broberger C, Gorbatyuk O, Hokfelt T. Effect of 2-mercaptoacetate and 2-deoxy-D-glucose administration on the expression of NPY, AGRP, POMC, MCH and hypocretin/orexin in the rat hypothalamus. Neuroreport 2000;11(1):117–121.

    PubMed  CAS  Google Scholar 

  47. Qu D, Ludwig DS, Gammeltoft S, et al. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 1996;380(6571):243–247.

    PubMed  CAS  Google Scholar 

  48. Shimada M, Tritos NA, Lowell BB, et al. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 1998;396(6712):670–674.

    PubMed  CAS  Google Scholar 

  49. Cai XJ, Widdowson PS, Harrold J, et al. Hypothalamic orexin expression: modulation by blood glucose and feeding. Diabetes 1999;48(11):2132–2137.

    PubMed  CAS  Google Scholar 

  50. Mondal MS, Nakazato M, Date Y, et al. Widespread distribution of orexin in rat brain and its regulation upon fasting. Biochem Biophys Res Commun 1999;256(3):495–499.

    PubMed  CAS  Google Scholar 

  51. Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998;92(5):696,697.

    Google Scholar 

  52. Stricker-Krongrad A, Beck B. Modulation of hypothalamic hypocretin/orexin mRNA expression by glucocorticoids. Biochem Biophys Res Commun 2002;296(1):129–133.

    PubMed  CAS  Google Scholar 

  53. Lawrence CB, Snape AC, Baudoin FM, Luckman SM. Acute central ghrelin and GH secretagogues induce feeding and activate brain appetite centers. Endocrinology 2002;143(1):155–162.

    PubMed  CAS  Google Scholar 

  54. Olszewski PK, Li D, Grace MK, et al. Neural basis of orexigenic effects of ghrelin acting within lateral hypothalamus. Peptides 2003;24(4):597–602.

    PubMed  CAS  Google Scholar 

  55. Griffond B, Risold PY, Jacquemard C, et al. Insulin-induced hypoglycemia increases preprohypocretin (orexin) mRNA in the rat lateral hypothalamic area. Neurosci Lett 1999;262(2):77–80.

    PubMed  CAS  Google Scholar 

  56. Moriguchi T, Sakurai T, Nambu T, et al. Neurons containing orexin in the lateral hypothalamic area of the adult rat brain are activated by insulin-induced acute hypoglycemia. Neurosci Lett 1999;264(1–3):101–104.

    PubMed  CAS  Google Scholar 

  57. Beck B, Richy S. Hypothalamic hypocretin/orexin and neuropeptide Y: divergent interaction with energy depletion and leptin. Biochem Biophys Res Commun 1999;258(1):119–122.

    PubMed  CAS  Google Scholar 

  58. Taheri S, Mahmoodi M, Opacka-Juffry J, et al. Distribution and quantification of immunoreactive orexin A in rat tissues. FEBS Lett 1999;457(1):157–161.

    PubMed  CAS  Google Scholar 

  59. Wortley KE, Chang GQ, Davydova Z, Leibowitz SF. Peptides that regulate food intake: orexin gene expression is increased during states of hypertriglyceridemia. Am J Physiol Regul Integr Comp Physiol 2003;284(6):R1454–R1465.

    PubMed  CAS  Google Scholar 

  60. Yamamoto Y, Ueta Y, Date Y, et al. Down regulation of the prepro-orexin gene expression in genetically obese mice. Brain Res Mol Brain Res 1999;65(1):14–22.

    PubMed  CAS  Google Scholar 

  61. Briski KP, Sylvester PW. Hypothalamic orexin-A-immunpositive neurons express Fos in response to central glucopenia. Neuroreport 2001;12(3):531–534.

    PubMed  CAS  Google Scholar 

  62. Cai XJ, Evans ML, Lister CA, et al. Hypoglycemia activates orexin neurons and selectively increases hypothalamic orexin-B levels: responses inhibited by feeding and possibly mediated by the nucleus of the solitary tract. Diabetes 2001;50(1):105–112.

    PubMed  CAS  Google Scholar 

  63. Yamanaka A, Beuckmann CT, Willie JT, et al. Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 2003;38(5):701–713.

    PubMed  CAS  Google Scholar 

  64. Gundlach AL, Burazin TC, Larm JA. Distribution, regulation and role of hypothalamic galanin systems: renewed interest in a pleiotropic peptide family. Clin Exp Pharmacol Physiol 2001;28(1–2):100–105.

    PubMed  CAS  Google Scholar 

  65. Leibowitz SF. Brain peptides and obesity: pharmacologic treatment. Obes Res 1995;3(Suppl 4):573S–589S.

    PubMed  CAS  Google Scholar 

  66. Tempel DL, Leibowitz SF. Diurnal variations in the feeding responses to norepinephrine, neuropeptide Y and galanin in the PVN. Brain Res Bull 1990;25(6):821–825.

    PubMed  CAS  Google Scholar 

  67. Wynick D, Bacon A. Targeted disruption of galanin: new insights from knock-out studies. Neuropeptides 2002;36(2–3):132–144.

    PubMed  CAS  Google Scholar 

  68. Bergonzelli GE, Pralong FP, Glauser M, et al. Interplay between galanin and leptin in the hypothalamic control of feeding via corticotropin-releasing hormone and neuropeptide Y. Diabetes 2001;50(12):2666–2672.

    PubMed  CAS  Google Scholar 

  69. Cheung CC, Hohmann JG, Clifton DK, Steiner RA. Distribution of galanin messenger RNA-expressing cells in murine brain and their regulation by leptin in regions of the hypothalamus. Neuroscience 2001;103(2):423–432.

    PubMed  CAS  Google Scholar 

  70. Seth A, Stanley S, Jethwa P, et al. Galanin-like peptide stimulates the release of gonadotropin-releasing hormone in vitro and may mediate the effects of leptin on the hypothalamo-pituitary-gonadal axis. Endocrinology 2004;145(2):743–750.

    PubMed  CAS  Google Scholar 

  71. Akabayashi A, Watanabe Y, Gabriel SM, et al. Hypothalamic galanin-like immunoreactivity and its gene expression in relation to circulating corticosterone. Brain Res Mol Brain Res 1994;25(3–4):305–312.

    PubMed  CAS  Google Scholar 

  72. Hedlund PB, Koenig JI, Fuxe K. Adrenalectomy alters discrete galanin mRNA levels in the hypothalamus and mesencephalon of the rat. Neurosci Lett 1994;170(1):77–82.

    PubMed  CAS  Google Scholar 

  73. Wang J, Akabayashi A, Yu HJ, et al. Hypothalamic galanin: control by signals of fat metabolism. Brain Res 1998;804(1):7–20.

    PubMed  CAS  Google Scholar 

  74. Akabayashi A, Koenig JI, Watanabe Y, et al. Galanin-containing neurons in the paraventricular nucleus: a neurochemical marker for fat ingestion and body weight gain. Proc Natl Acad Sci USA 1994;91(22):10,375–10,379.

    PubMed  CAS  Google Scholar 

  75. Leibowitz SF. Hypothalamic galanin, dietary fat, and body fat. In: Bray GA, Ryan DH, eds. Nutrition, Genetics, and Obesity. Louisiana State University Press, Baton Rouge, 1999, pp. 338–381.

    Google Scholar 

  76. Leibowitz SF, Akabayashi A, Wang J. Obesity on a high-fat diet: role of hypothalamic galanin in neurons of the anterior paraventricular nucleus projecting to the median eminence. J Neurosci 1998;18(7):2709–2719.

    PubMed  CAS  Google Scholar 

  77. Odorizzi M, Max JP, Tankosic P, et al. Dietary preferences of Brattleboro rats correlated with an overexpression of galanin in the hypothalamus. Eur J Neurosci 1999;11(9):3005–3014.

    PubMed  CAS  Google Scholar 

  78. Kyrkouli SE, Stanley BG, Leibowitz SF. Galanin: stimulation of feeding induced by medial hypothalamic injection of this novel peptide. Eur J Pharmacol 1986;122(1):159–160.

    PubMed  CAS  Google Scholar 

  79. Barton C, Lin L, York DA, Bray GA. Differential effects of enterostatin, galanin and opioids on high-fat diet consumption. Brain Res 1995;702(1–2):55–60.

    PubMed  CAS  Google Scholar 

  80. Nagase H, Nakajima A, Sekihara H, et al. Regulation of feeding behavior, gastric emptying, and sympathetic nerve activity to interscapular brown adipose tissue by galanin and enterostatin: the involvement of vagal-central nervous system interactions. J Gastroenterol 2002;37(Suppl 14):118–127.

    PubMed  CAS  Google Scholar 

  81. Nemeth PM, Rosser BW, Choksi RM, et al. Metabolic response to a high-fat diet in neonatal and adult rat muscle. Am J Physiol 1992;262(2 Pt 1):C282–C286.

    PubMed  CAS  Google Scholar 

  82. MacNeil DJ, Howard AD, Guan X, et al. The role of melanocortins in body weight regulation: opportunities for the treatment of obesity. Eur J Pharmacol 2002;450(1):93–109.

    PubMed  CAS  Google Scholar 

  83. Gantz I, Fong TM. The melanocortin system. Am J Physiol Endocrinol Metab 2003;284(3):E468–E474.

    PubMed  CAS  Google Scholar 

  84. Cowley MA, Smart JL, Rubinstein M, et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 2001;411(6836):480–484.

    PubMed  CAS  Google Scholar 

  85. Kieffer TJ, Habener JF. The adipoinsular axis: effects of leptin on pancreatic beta-cells. Am J Physiol Endocrinol Metab 2000;278(1):E1–E14.

    PubMed  CAS  Google Scholar 

  86. Schwartz MW, Woods SC, Porte D Jr, et al. Central nervous system control of food intake. Nature 2000;404(6778):661–671.

    PubMed  CAS  Google Scholar 

  87. Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell 2001;104(4):531–543.

    PubMed  CAS  Google Scholar 

  88. Pierroz DD, Ziotopoulou M, Ungsunan L, et al. Effects of acute and chronic administration of the melanocortin agonist MTII in mice with diet-induced obesity. Diabetes 2002;51(5):1337–1345.

    PubMed  CAS  Google Scholar 

  89. Clegg DJ, Benoit SC, Air EL, et al. Increased dietary fat attenuates the anorexic effects of intracerebroventricular injections of MTII. Endocrinology 2003;144(7):2941–2946.

    PubMed  CAS  Google Scholar 

  90. Harrold JA, Williams G, Widdowson PS. Changes in hypothalamic agouti-related protein (AGRP), but not alpha-MSH or pro-opiomelanocortin concentrations in dietary-obese and food-restricted rats. Biochem Biophys Res Commun 1999;258(3):574–577.

    PubMed  CAS  Google Scholar 

  91. Torri C, Pedrazzi P, Leo G, et al. Diet-induced changes in hypothalamic pro-opio-melanocortin mRNA in the rat hypothalamus. Peptides 2002;23(6):1063–1068.

    PubMed  CAS  Google Scholar 

  92. Chen AS, Marsh DJ, Trumbauer ME, et al. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet 2000;26(1):97–102.

    PubMed  CAS  Google Scholar 

  93. Yeo GS, Farooqi IS, Aminian S, et al. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet 1998;20(2):111, 112.

    PubMed  CAS  Google Scholar 

  94. Vaisse C, Clement K, Guy-Grand B, Froguel P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 1998;20(2):113, 114.

    PubMed  CAS  Google Scholar 

  95. Farooqi IS, Keogh JM, Yeo GS, et al. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 2003;348(12):1085–1095.

    PubMed  CAS  Google Scholar 

  96. O’Rahilly S, Farooqi IS, Yeo GS, Challis BG. Minireview: human obesity-lessons from monogenic disorders. Endocrinology 2003;144(9):3757–3764.

    PubMed  CAS  Google Scholar 

  97. Bluher S, Ziotopoulou M, Bullen JW Jr, et al. Responsiveness to peripherally administered melanocortins in lean and obese mice. Diabetes 2004;53(1):82–90.

    PubMed  Google Scholar 

  98. Hurd YL, Fagergren P. Human cocaine-and amphetamine-regulated transcript (CART) mRNA is highly expressed in limbic-and sensory-related brain regions. J Comp Neurol 2000;425(4):583–598.

    PubMed  CAS  Google Scholar 

  99. Kristensen P, Judge ME, Thim L, et al. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 1998;393(6680):72–76.

    PubMed  CAS  Google Scholar 

  100. Elias CF, Lee C, Kelly J, et al. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron 1998;21(6):1375–1385.

    PubMed  CAS  Google Scholar 

  101. Savontaus E, Conwell IM, Wardlaw SL. Effects of adrenalectomy on AGRP, POMC, NPY and CART gene expression in the basal hypothalamus of fed and fasted rats. Brain Res 2002;958(1):130–138.

    PubMed  CAS  Google Scholar 

  102. Vrang N, Larsen PJ, Tang-Christensen M, et al. Hypothalamic cocaine-amphetamine regulated transcript (CART) is regulated by glucocorticoids. Brain Res 2003;965(1–2):45–50.

    PubMed  CAS  Google Scholar 

  103. Larm JA, Gundlach AL. Galanin-like peptide (GALP) mRNA expression is restricted to arcuate nucleus of hypothalamus in adult male rat brain. Neuroendocrinology 2000;72(2):67–71.

    PubMed  CAS  Google Scholar 

  104. Jureus A, Cunningham MJ, McClain ME, et al. Galanin-like peptide (GALP) is a target for regulation by leptin in the hypothalamus of the rat. Endocrinology 2000;141(7):2703–2706.

    PubMed  CAS  Google Scholar 

  105. Kastin AJ, Akerstrom V, Hackler L. Food deprivation decreases blood galanin-like peptide and its rapid entry into the brain. Neuroendocrinology 2001;74(6):423–432.

    PubMed  CAS  Google Scholar 

  106. Krasnow SM, Fraley GS, Schuh SM, et al. A role for galanin-like peptide in the integration of feeding, body weight regulation, and reproduction in the mouse. Endocrinology 2003;144(3):813–822.

    PubMed  CAS  Google Scholar 

  107. Lawrence CB, Baudoin FM, Luckman SM. Centrally administered galanin-like peptide modifies food intake in the rat: a comparison with galanin. J Neuroendocrinol 2002;14(11):853–860.

    PubMed  CAS  Google Scholar 

  108. Richard D, Lin Q, Timofeeva E. The corticotropin-releasing factor family of peptides and CRF receptors: their roles in the regulation of energy balance. Eur J Pharmacol 2002;440(2–3):189–197.

    PubMed  CAS  Google Scholar 

  109. Richard D, Huang Q, Timofeeva E. The corticotropin-releasing hormone system in the regulation of energy balance in obesity. Int J Obes Relat Metab Disord 2000;24(Suppl 2):S36–S39.

    PubMed  CAS  Google Scholar 

  110. Whitnall MH. Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system. Prog Neurobiol 1993;40(5):573–629.

    PubMed  CAS  Google Scholar 

  111. Cai A, Wise PM. Age-related changes in the diurnal rhythm of CRH gene expression in the paraventricular nuclei. Am J Physiol 1996;270(2 Pt 1):E238–E243.

    PubMed  CAS  Google Scholar 

  112. Moldow RL, Fischman AJ. Circadian rhythm of corticotropin releasing factor-like immunoreactivity in rat hypothalamus. Peptides 1984;5(6):1213–1215.

    PubMed  CAS  Google Scholar 

  113. Arase K, York DA, Shimizu H, et al. Effects of corticotropin-releasing factor on food intake and brown adipose tissue thermogenesis in rats. Am J Physiol 1988;255(3 Pt 1):E255–E259.

    PubMed  CAS  Google Scholar 

  114. Egawa M, Yoshimatsu H, Bray GA. Effect of corticotropin releasing hormone and neuropeptide Y on electrophysiological activity of sympathetic nerves to interscapular brown adipose tissue. Neuroscience 1990;34(3):771–775.

    PubMed  CAS  Google Scholar 

  115. Glowa JR, Barrett JE, Russell J, Gold PW. Effects of corticotropin releasing hormone on appetitive behaviors. Peptides 1992;13(3):609–621.

    PubMed  CAS  Google Scholar 

  116. Inui A. Transgenic approach to the study of body weight regulation. Pharmacol Rev 2000;52(1):35–61.

    PubMed  CAS  Google Scholar 

  117. Rothwell NJ. Central effects of CRF on metabolism and energy balance. Neurosci Biobehav Rev 1990;14(3):263–271.

    PubMed  CAS  Google Scholar 

  118. Currie PJ, Coscina DV, Bishop C, et al. Hypothalamic paraventricular nucleus injections of urocortin alter food intake and respiratory quotient. Brain Res 2001;916(1–2):222–228.

    PubMed  CAS  Google Scholar 

  119. Krahn DD, Gosnell BA, Levine AS, Morley JE. Behavioral effects of corticotropin-releasing factor: localization and characterization of central effects. Brain Res 1988;443(1–2):63–69.

    PubMed  CAS  Google Scholar 

  120. Spina M, Merlo-Pich E, Chan RK, et al. Appetite-suppressing effects of urocortin, a CRF-related neuropeptide. Science 1996;273(5281):1561–1564.

    PubMed  CAS  Google Scholar 

  121. Wang C, Mullet MA, Glass MJ, et al. Feeding inhibition by urocortin in the rat hypothalamic paraventricular nucleus. Am J Physiol Regul Integr Comp Physiol 2001;280(2):R473–R480.

    PubMed  CAS  Google Scholar 

  122. Heisler LK, Cowley MA, Kishi T, et al. Central serotonin and melanocortin pathways regulating energy homeostasis. Ann N Y Acad Sci 2003;994:169–174.

    PubMed  CAS  Google Scholar 

  123. Bachman ES, Dhillon H, Zhang CY, et al. betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science 2002;297(5582):843–845.

    PubMed  CAS  Google Scholar 

  124. Wang GJ, Volkow ND, Fowler JS. The role of dopamine in motivation for food in humans: implications for obesity. Expert Opin Ther Targets 2002;6(5):601–609.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Shetty, G.K., Karanastasis, G., Mantzoros, C.S. (2006). Central Integration of Peripheral Signals in Regulation of Energy Homeostasis. In: Mantzoros, C.S. (eds) Obesity and Diabetes. Contemporary Diabetes. Humana Press. https://doi.org/10.1007/978-1-59259-985-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-985-1_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-538-5

  • Online ISBN: 978-1-59259-985-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics