Skip to main content
  • 216 Accesses

Abstract

Ion channel mutations cause long QT syndrome, Brugada syndrome, conduction disorders, catecholinergic ventricular tachycardia, and some forms of familial atrial fibrillation and pre-excitation. Transgenic and gene-targeted mouse models of these disorders have further increased the understanding of links between ion channel mutations and these rare arrhythmia syndromes. Molecular genetics, pathophysiology, and implications of these findings are discussed later. It is important to realize, however, that the genetic basis of other inherited arrhythmic syndromes remains unclear, as does the role of genes that are not ion channels. In addition, the relationship of common genetic variants (polymorphisms) to arrhythmic risk is only beginning to be studied. This chapter highlights the avenues of future research that seem most likely to yield results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected References

  • Abbott GW, Sesti F, Splawski I, et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 1999; 97:175–187.

    Article  PubMed  CAS  Google Scholar 

  • Arad M, Moskowitz IP, Patel VV, et al. Transgenic mice overexpressing mutant PRKAG2 define the cause of Wolff-Parkinson-White syndrome in glycogen storage cardiomyopathy. Circulation 2003; 107: 2850–2856.

    Article  PubMed  CAS  Google Scholar 

  • Babij P, Askew GR, Nieuwenhuijsen B, et al. Inhibition of cardiac delayed rectifier K+current by overexpression of the long-QT syndrome HERG G628S mutation in transgenic mice. Circ Res 1998; 83:668–678.

    PubMed  CAS  Google Scholar 

  • Bennett PB, Yazawa K, Makita N, George AL Jr. Molecular mechanism for an inherited cardiac arrhythmia. Nature 1995; 376:683–685.

    Article  PubMed  CAS  Google Scholar 

  • Bezzina CR, Rook MB, Wilde AA. Cardiac sodium channel and inherited arrhythmia syndromes. Cardiovasc Res 2001; 49:257–271.

    Article  PubMed  CAS  Google Scholar 

  • Bezzina C, Veldkamp MW, van Den Bert MP, et al. a single Na(+) channel mutation causing both long-QT and Brugada syndromes. Circ Res 1999; 85:1206–1213.

    PubMed  CAS  Google Scholar 

  • Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. J Am Coll Cardiol 1992; 20:1391–1396.

    Article  PubMed  CAS  Google Scholar 

  • Brugada P, Brugada J. Further characterization of the syndrome of right bundle branch block, ST elevation, and sudden cardiac death. J Cardiovasc Electrophysiol 1997; 8:325–331.

    Article  PubMed  CAS  Google Scholar 

  • Brugada P, Brugada R, Brugada J, Geelen P. Use of the prophylactic implantable cardioverter defibrillator for patients with normal hearts. Am J Cardiol 1999; 83:98D–100D.

    Article  PubMed  CAS  Google Scholar 

  • Brugada J, Brugada R, Antzelevitch C, Towbin J, Nademanee K, Brugada P. Long-term follow-up of individuals with the electrocardiographic pattern of right bundle-branch block and ST-segment elevation in precordial leads V1 to V3. Circulation 2002;105:73–78.

    Article  PubMed  Google Scholar 

  • Brugada R., Brugada J, Antzelevitch C, et al. Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts. Circulation 2000;101:510–515.

    PubMed  CAS  Google Scholar 

  • Brugada R., Hong K, Dumaine R, et al. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation 2004; 109:30–35.

    Article  PubMed  CAS  Google Scholar 

  • Brugada R, Tapscott T, Czernuszewicz GZ, et al. Identification of a genetic locus for familial atrial fibrillation. N Engl J Med 1997; 336: 905–911.

    Article  PubMed  CAS  Google Scholar 

  • Camm AJ, Janse MJ, Roden DM, Rosen MR, Cinca J, Cobbe SM. Congenital and acquired long QT syndrome. Eur Heart J 2000; 21: 1232–1237.

    Article  PubMed  CAS  Google Scholar 

  • Casimiro MC, Knollmann BC, Ebert SN, et al. Targeted disruption of the Kcnq1 gene produces a mouse model of Jervell and Lange-Nielsen syndrome. Proc Natl Acad Sci USA 2001; 98: 2526–2531.

    Article  PubMed  CAS  Google Scholar 

  • Chauhan VS, Tuvia S, Buhusi M, Bennett B, Grant AO. Abnormal cardiac Na+channel properties and QT heart rate adaptation in neonatal AnkyrinB knockout mice. Circ Res 2000; 86:441–447.

    PubMed  CAS  Google Scholar 

  • Chen Q, Kirsch GE, Zhang D, et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 1998; 392:293–296.

    Article  PubMed  CAS  Google Scholar 

  • Chen Y-H, Xu S-J, Bendahhou S, et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 2003; 299:251–254.

    Article  PubMed  CAS  Google Scholar 

  • Demolombe S, Lande G, Charpentier F, et al. Transgenic mice overexpressing human KvLQT1 dominant-negative isoform, part I: Phenotypic characterization. Cardiovasc Res 2001; 50:314–327.

    Article  PubMed  CAS  Google Scholar 

  • Di Diego JM, Cordeiro JM, Goodrow RJ, et al. Ionic and cellular basis for the predominance of the Brugada syndrome phenotype in males. Circulation 2002; 106:2004–2011.

    Article  PubMed  Google Scholar 

  • Drici MD, Arrighi I, Chouabe C, et al. Involvement of IsK-associated K+ channel in heart rate control of repolarization in a murine engineered model of Jervell and Lange-Nielsen syndrome. Circ Res 1998; 83: 95–102.

    PubMed  CAS  Google Scholar 

  • Ellinor PT, Shin JT, Moore RK, Yoerger DM, McRae CA. Locus for atrial fibrillation maps to chromosome 6q14-16. Circulation 2003;107: 2880–2883.

    Article  PubMed  Google Scholar 

  • Ficker E, Obejero-Paz CA, Zhao S, Brown AM. The binding site for channel blockers that rescue misprocessed human long QT syndrome type 2 ether-a-go-go-related (HERG) mutations. J Biol Chem 2002; 277: 4989–4998.

    Article  PubMed  CAS  Google Scholar 

  • Gaita F, Giustetto C, Bianchi F, et al. Short QT syndrome: a familial cause of sudden death. Circulation 2003; 108:965–970.

    Article  PubMed  Google Scholar 

  • Gollob MH, Green MS, Tang AS, et al. Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl J Med 2001; 344:1823–1831.

    Article  PubMed  CAS  Google Scholar 

  • Hermida JS, Lemoine JL, Aoun FB, Jarry G, Rey JL, Quiret JC. Prevalence of the Brugada syndrome in an apparently healthy population. Am J Cardiol 2000; 86:91–94.

    Article  PubMed  CAS  Google Scholar 

  • Hille B. Ion Channels in Excitable Membranes, 2nd ed. Sunderland MA: Sinauer Associates, 1992.

    Google Scholar 

  • Jervell A, Lange-Nielsen F. Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval and sudden death. Am Heart J 1957; 54:59–68.

    Article  PubMed  CAS  Google Scholar 

  • Keating MT, Sanguinetti MC. Molecular and cellular mechanisms of cardiac arrhythmias. Cell 2001; 104:569–580.

    Article  PubMed  CAS  Google Scholar 

  • Kupershmidt S, Yang T, Anderson ME, et al. Replacement by homologous recombination of the minK gene with lacZ reveals restriction of minK expression to the mouse cardiac conduction system. Circ Res 1999; 84:146–152.

    PubMed  CAS  Google Scholar 

  • Laitinen PJ, Brown KM, Piippo K, et al. Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation 2001; 103:485–490.

    PubMed  CAS  Google Scholar 

  • Lee MP, Ravenel JD, Hu RJ, et al. Targeted disruption of the KvLQT1 gene causes deafness and gastric hyperplasia in mice. J Clin Invest 2000; 106:1447–1455.

    Article  PubMed  CAS  Google Scholar 

  • Lees-Miller JP, Guo J, Somers JR, et al. Selective knockout of mouse ERG1B potassium channel eliminates IKr in adult ventricular myocytes and elicits episodes of abrupt sinus bradycardia. Mol Cell Biol 2003; 23:1856–1862.

    Article  PubMed  CAS  Google Scholar 

  • London B, Pan X-H, Lewarchik CM, Lee JS. QT interval prolongation and arrhythmias in heterozygous Merg1-targeted mice. Circulation 1998in; 98:I56.

    Google Scholar 

  • London B. Use of transgenic and gene-targeted mice to study K+channel function in the cardiovascular system. In: Archer SA, Rusch JF, eds. Potassium Channels in Cardiovascular Biology. New York: Plenum Publishing, 2001: pp. 177–191.

    Google Scholar 

  • Marban E. Cardiac channelopathies. Nature 2002; 415:213–218.

    Article  PubMed  CAS  Google Scholar 

  • Marx SO, Kurokawa J, Reiken S, et al. Requirement of a macromolecular signaling complex for β adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science 2002; 295:496–499.

    Article  PubMed  CAS  Google Scholar 

  • McKoy G, Protonotarios N, Crosby A, et al. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and wooly hair (Naxos disease). Lancet 2000; 355:2119–2124.

    Article  PubMed  CAS  Google Scholar 

  • Mitcheson JS, Chen J, Lin M, Culberson C, Sanguinetti MC. A structural basis for drug-induced long-QT syndrome. Proc Natl Acad Sci USA 2000; 97:12,329–12,333.

    Article  PubMed  CAS  Google Scholar 

  • Mohler PJ, Schott J-J, Gramolini AO, et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 2003; 421:634–639.

    Article  PubMed  CAS  Google Scholar 

  • Moss AJ, Zareba W, Hall WJ, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarctions and reduced ejection fraction. N Engl J Med 2002; 346:877–883.

    Article  PubMed  Google Scholar 

  • Nademanee K. Sudden unexplained death syndrome in southeast Asia. Am J Cardiol 1997; 79:10,11.

    Article  Google Scholar 

  • Nuyens D, Stengl M, Dugarmaa S, et al. Abrupt rate accelerations or premature beats cause life-threatening arrhythmias in mice with longQT3 syndrome. Nat Med 2001; 7:1021–1027.

    Article  PubMed  CAS  Google Scholar 

  • Papadatos GA, Wallerstein PMR, Head CEG, et al. Slowed conduction and ventricular tachycardia after targeted disruption of the cardiac sodium channel gene Scn5a. Proc Natl Acad Sci USA 2002; 99: 6210–6215.

    Article  PubMed  CAS  Google Scholar 

  • Plaster NM, Tawil R, Tristani-Firouzi M, et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell 2001; 105:511–519.

    Article  PubMed  CAS  Google Scholar 

  • Priori SG, Napolitano C, Gasparini M, et al. Clinical and genetic heterogeneity of right bundle branch block and ST-segment elevation syndrome. A prospective evaluation of 52 families. Circulation 2000; 102:2509–2515.

    PubMed  CAS  Google Scholar 

  • Priori SG, Napolitano C, Schwartz PJ, Bloise R, Crotti L, Ronchetti E. The elusive link between LQT3 and Brugada syndrome. The role of flecainide challenge. Circulation 2000; 102:945–947.

    PubMed  CAS  Google Scholar 

  • Priori SG, Schwartz PJ, Napolitano C, et al. Risk stratification in the longQT syndrome. N Engl J Med 2003; 348:1866–1874.

    Article  PubMed  Google Scholar 

  • Prystowsky EN, Klein G J. Cardiac Arrhythmias: An Integrated Approach for the Clinician. New York: McGraw-Hill, 1996.

    Google Scholar 

  • Rajamani S, Anderson CL. Anson BD, January CT. Pharmacological rescue of human K+channel long-QT2 mutations: Human ether-a-go-gorelated gene rescue without block. Circulation 2002; 105:2830–2835.

    Article  PubMed  CAS  Google Scholar 

  • Romano C. Congenital cardiac arrhythmia. Lancet 1965; 1:658,659.

    Google Scholar 

  • Sanguinetti MC, Curran ME, Spector PS, Keating KT. Spectrum of HERG K+-channel dysfunction in an inherited cardiac arrhythmia. Proc Natl Acad Sci USA 1996; 93:2208–2212.

    Article  PubMed  CAS  Google Scholar 

  • Schott J-J, Alshinawi C, Kyndt F, et al. Cardiac conduction defects associate with mutations in SCN5A. Nat Genet 1999; 23:20,21.

    Article  CAS  Google Scholar 

  • Schwartz PJ, Locati EH, Napolitano C, Priori SG. The long QT syndrome. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology: From Cell to Bedside, 2nd ed. Philadelphia: WB Saunders Co, 1995; pp. 788–811.

    Google Scholar 

  • Schwartz PJ, Priori SG, Dumaine R, et al. A molecular link between the sudden infant death syndrome and the long-QT syndrome. N Engl J Med 2000; 343:262–267.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz PJ, Priori SG, Spazzolini C, et al. Genotype-phenotype correlation in the long-QT syndrome. Gene-specific triggers for life-threatening arrhythmias. Circulation 2001; 103:89–95.

    PubMed  CAS  Google Scholar 

  • Shirai N, Makita N, Sasaki K, et al. A mutant cardiac sodium channel with multiple biophysical defects associated with overlapping clinical features of Brugada syndrome and cardiac conduction disease. Cardiovasc Res 2002; 53:348–354.

    Article  PubMed  CAS  Google Scholar 

  • Smits JP, Eckard L, Probst V, et al. Genotype-phenotype relationship in Brugada syndrome: electrocardiographic features differentiate SCN5Arelated patients from non-SCN5A-related patients. J Am Coll Cardiol 2002; 40:350–356.

    Article  PubMed  CAS  Google Scholar 

  • Splawski I, Timothy KW, Tateyama M, et al. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science 2002; 297: 1333–1336.

    Article  PubMed  CAS  Google Scholar 

  • Tan HL, Bink-Boelkens MT, Bezzina CR, et al. A sodium-channel mutation causes isolated cardiac conduction disease. Nature 2001; 409:1043–1047.

    Article  PubMed  CAS  Google Scholar 

  • Tiso N, Stephan DA, Nava A, et al. Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum Mol Genet 2001; 10:189–194.

    Article  PubMed  CAS  Google Scholar 

  • Tomaselli GF, Marban E. Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc Res 1999; 42:270–283.

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Curran ME, Splawski I, et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 1996; 12:17–23.

    Article  PubMed  Google Scholar 

  • Ward OC. A new familial cardiac syndrome in children. J Ir Med Assoc 1964; 54:103–106.

    PubMed  CAS  Google Scholar 

  • Wehrens XHT, Lehnart SE, Huang F, et al. FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 2003; 113:829–840.

    Article  PubMed  CAS  Google Scholar 

  • Weiss R, Barmada MM, Nguyen T, et al. Clinical and molecular heterogeneity in the Brugada syndrome: A novel gene locus on chromosome 3. Circulation 2002; 105:707–713.

    Article  PubMed  CAS  Google Scholar 

  • Yan G-X, Antzelevitch C. Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST-segment elevation. Circulation 1999; 100:1660–1666.

    PubMed  CAS  Google Scholar 

  • Yang P, Kanki H, Drolet B, et al. Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation 2002; 105:1943–1948.

    Article  PubMed  CAS  Google Scholar 

  • Zaritsky JJ, Redell JB, Tempel BL, Schwarz TL. The consequences of disrupting cardiac inwardly rectifying K+current (IK1) as revealed by the targeted deletion of the murine Kir2.1 and Kir2.2 genes. J Physiol (London) 2001; 533:697–710.

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Timothy KW, Vincent GM, et al. Spectrum of ST-T-wave patterns and repolarization parameters in congenital long-QT syndrome. ECG findings identify genotypes. Circulation 2000; 102:2849–2855.

    PubMed  CAS  Google Scholar 

  • Zhou Z, Gong Q, Epstein ML, January CT. HERG channel dysfunction in human long QT syndrome: Intracellular transport and functional defects. J Biol Chem 1999; 273:21,061–21,066.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this chapter

Cite this chapter

London, B. (2006). Arrhythmias. In: Runge, M.S., Patterson, C. (eds) Principles of Molecular Medicine. Humana Press. https://doi.org/10.1007/978-1-59259-963-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-963-9_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-202-5

  • Online ISBN: 978-1-59259-963-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics