Skip to main content

Gene Therapy for Patients With Head and Neck Cancer

  • Chapter
Squamous Cell Head and Neck Cancer

Part of the book series: Current Clinical Oncology ((CCO))

Abstract

It is generally recognized that the unregulated growth of cancer cells results from sequential acquisition of mutations in genes that control growth and/or differentiation of cells or are involved in protection of the genome. Cancer develops when the accumulation of these alterations allows for a growth advantage over normal surrounding cells (1). The pathogenesis of cancer can be described as follows: Oncogenes are altered normal genes (called protooncogenes) that mediate normal cell growth and differentiation. Gain-of-function (dominant) mutations affect these genes to induce the neoplastic phenotype. Tumor suppressor genes are genes that normally inhibit cellular function. Loss-of-function (recessive) mutations alter their inhibitory properties, leading to unimpeded proliferation. Gene therapy aims to change these genetic alterations so that cancer cell growth can be suppressed. After a gene is transfected into a cell, mRNA is transcribed, and then its protein product is translated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. [Review]. Cell 1990; 61:759–767.

    Article  PubMed  CAS  Google Scholar 

  2. Boyle JO, Hakim J, Koch W, et al. The incidence of p53 mutations increases with progression of head and neck cancer. Cancer Res 1993; 53:4477–4480.

    PubMed  CAS  Google Scholar 

  3. Koch WM, Brennan JA, Zahurak M, et al. p53 mutation and locoregional treatment failure in head and neck squamous cell carcinoma. J Natl Cancer Inst 1996; 88:1580–1586.

    Article  PubMed  CAS  Google Scholar 

  4. Chomchai JS, Du W, Sarkar FH, et al. Prognostic significance of p53 gene mutations in laryngeal cancer. Laryngoscope 1999; 109:455–459.

    Article  PubMed  CAS  Google Scholar 

  5. Harris CC. Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J Natl Cancer Inst 1996; 88:1442–1455.

    Article  PubMed  CAS  Google Scholar 

  6. Beckhardt RN, Kiyokawa N, Xi L, et al. HER-2/neu oncogene characterization in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 1995; 121:1265–1270.

    PubMed  CAS  Google Scholar 

  7. Ibrahim SO, Vasstrand EN, Liavaag PG, Johannessen AC, Lillehaug JR. Expression of c-erbB proto-oncogene family members in squamous cell carcinoma of the head and neck. Anticancer Res 1997; 17:4539–4546.

    PubMed  CAS  Google Scholar 

  8. Capaccio P, Pruneri G, Carboni N, et al. Cyclin D1 expression is predictive of occult metastases in head and neck cancer patients with clinically negative cervical lymph nodes. Head Neck 2000; 22:234–240.

    Article  PubMed  CAS  Google Scholar 

  9. Mineta H, Miura K, Takebayashi S, et al. Cyclin D1 overexpression correlates with poor prognosis in patients with tongue squamous cell carcinoma. Oral Oncol 2000; 36:194–198.

    Article  PubMed  CAS  Google Scholar 

  10. Bova RJ, Quinn DI, Nankervis JS, et al. Cyclin D1 and p16INK4A expression predict reduced survival in carcinoma of the anterior tongue. Clin.Cancer Res 1999; 5:2810–2819.

    CAS  Google Scholar 

  11. Myers JN, Whiteside T. Immunotherapy of squamous cell carcinoma of the head and neck. In: Myers EN, Suen J, eds. Cancer of the Head and Neck. Philadelphia: WB Saunders, 1995:805–817.

    Google Scholar 

  12. Guinan EC, Gribben JG, Boussiotis VA, Freeman GJ, Nadler LM. Pivotal role of the B7:CD28 pathway in transplantation tolerance and tumor immunity. Blood 1994; 84:3261–3282.

    PubMed  CAS  Google Scholar 

  13. Mulligan RC. The basic science of gene therapy. Science 1993; 260:926–932.

    Article  PubMed  CAS  Google Scholar 

  14. Yang Y, Su Q, Wilson JM. Role of viral antigens in destructive cellular immune responses to adenovirus vector-transduced cells in mouse lungs. J Virol 1996; 70:7209–7212.

    PubMed  CAS  Google Scholar 

  15. Yang Y, Wilson JM. Clearance of adenovirus-infected hepatocytes by MHC class I-restricted CD4+ CTLs in vivo. J Immunol 1995; 155:2564–2570.

    PubMed  CAS  Google Scholar 

  16. Mahato RI, Smith LC, Rolland A. Pharmaceutical perspectives of nonviral gene therapy. Adv Genet 1999; 41:95–156.

    PubMed  CAS  Google Scholar 

  17. Panje WR, Hier MP, Garman GR, Harrell E, Goldman A, Bloch I. Electroporation therapy of head and neck cancer. Ann Otol Rhinol Laryngol 1998; 107:779–785.

    PubMed  CAS  Google Scholar 

  18. Hofmann GA, Dev SB, Nanda GS, Rabussay D. Electroporation therapy of solid tumors. Crit Rev Ther Drug Carrier Syst 1999; 16:523–569.

    PubMed  CAS  Google Scholar 

  19. Rakhmilevich AL, Timmins JG, Janssen K, Pohlmann EL, Sheehy MJ, Yang NS. Gene gun-mediated IL-12 gene therapy induces antitumor effects in the absence of toxicity: a direct comparison with systemic IL-12 protein therapy. J Immunother 1999; 22:135–144.

    Article  PubMed  CAS  Google Scholar 

  20. Mahvi DM, Sheehy MJ, Yang NS. DNA cancer vaccines: a gene gun approach. Immunol Cell Biol 1997; 75:456–460.

    Article  PubMed  CAS  Google Scholar 

  21. Rakhmilevich AL, Turner J, Ford MJ, et al. Gene gun-mediated skin transfection with interleukin 12 gene results in regression of established primary and metastatic murine tumors. Proc Natl Acad Sci USA 1996; 93:6291–6296.

    Article  PubMed  CAS  Google Scholar 

  22. Sun WH, Burkholder JK, Sun J, et al. In vivo cytokine gene transfer by gene gun reduces tumor growth in mice. Proc Natl Acad Sci USA 1995; 92:2889–2893.

    Article  PubMed  CAS  Google Scholar 

  23. Mahvi DM, Sondel PM, Yang NS, et al. Phase I/IB study of immunization with autologous tumor cells transfected with the GM-CSF gene by particle-mediated transfer in patients with melanoma or sarcoma. Hum Gene Ther 1997; 8:875–891.

    PubMed  CAS  Google Scholar 

  24. Mahvi DM, Burkholder JK, Turner J, et al. Particle-mediated gene transfer of granulocyte-macrophage colony-stimulating factor cDNA to tumor cells: implications for a clinically relevant tumor vaccine. Hum Gene Ther 1996; 7:1535–1543.

    Article  PubMed  CAS  Google Scholar 

  25. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. [Review]. Science 1991; 253:49–53.

    Article  PubMed  CAS  Google Scholar 

  26. Brennan JA, Mao L, Hruban RH, et al. Molecular assessment of histopathological staging in squamous-cell carcinoma of the head and neck [see comments]. N Engl J Med 1995; 332:429–435.

    Article  PubMed  CAS  Google Scholar 

  27. Liu TJ, Zhang WW, Taylor DL, Roth JA, Goepfert H, Clayman GL. Growth suppression of human head and neck cancer cells by the introduction of a wild-type p53 gene via a recombinant adenovirus. Cancer Res 1994; 54:3662–3667.

    PubMed  CAS  Google Scholar 

  28. Clayman GL, el-Naggar AK, Roth JA, et al. In vivo molecular therapy with p53 adenovirus for microscopic residual head and neck squamous carcinoma. Cancer Res 1995; 55:1–6.

    PubMed  CAS  Google Scholar 

  29. Clayman GL, el-Naggar AK, Lippman SM, et al. Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma. J Clin Oncol 1998; 16:2221–2232.

    PubMed  CAS  Google Scholar 

  30. Bier-Laning CM, VanEcho D, Yver A, Dreiling L. A phase II multi-center study of AdCMV-p53 administered intratumorally to patients with recurrent head and neck cancer (#1712). Annual Meeting: Proceedings of the American Society of Clinical Oncology. 1999; 18:431a.

    Google Scholar 

  31. Clayman GL, Frank DK, Bruso PA, Goepfert H. Adenovirus-mediated wild-type p53 gene transfer as a surgical adjuvant in advanced head and neck cancers. Clin Cancer Res 1999; 5:1715–1722.

    PubMed  CAS  Google Scholar 

  32. Gleich LL, Gluckman JL, Armstrong S, et al. Alloantigen gene therapy for squamous cell carcinoma of the head and neck: results of a phase-1 trial. Arch Otolaryngol Head Neck Surg 1998; 124:1097–1104.

    PubMed  CAS  Google Scholar 

  33. Gleich LL. Gene therapy for head and neck cancer. Laryngoscope 2000; 110:708–726.

    Article  PubMed  CAS  Google Scholar 

  34. Yu D, Matin A, Xia W, Sorgi F, Huang L, Hung MC. Liposome-mediated in vivo E1A gene transfer suppressed dissemination of ovarian cancer cells that overexpress HER-2/neu. Oncogene 1995; 11:1383–1388.

    PubMed  CAS  Google Scholar 

  35. Yu D, Hamada J, Zhang H, Nicolson GL, Hung MC. Mechanisms of c-erbB2/neu oncogene-induced metastasis and repression of metastatic properties by adenovirus 5 E1A gene products. Oncogene 1992; 7:2263–2270.

    PubMed  CAS  Google Scholar 

  36. Zhang Y, Yu D, Xia W, Hung MC. HER-2/neu-targeting cancer therapy via adenovirus-mediated E1A delivery in an animal model. Oncogene 1995; 10:1947–1954.

    PubMed  CAS  Google Scholar 

  37. Frisch SM. Antioncogenic effect of adenovirus E1A in human tumor cells. Proc Natl Acad Sci USA 1991; 88:9077–9081.

    Article  PubMed  CAS  Google Scholar 

  38. Frisch SM. E1a induces the expression of epithelial characteristics. J Cell Biol 1994; 127:1085–1096.

    Article  PubMed  CAS  Google Scholar 

  39. Yoo GH, Hung MC, Lopez-Berestein G, et al. Phase i trial of intratumoral liposome e1a gene therapy in patients with recurrent breast and head and neck cancer. Clin Cancer Res 2001; 7:1237–1245.

    PubMed  CAS  Google Scholar 

  40. Villaret D, Glisson B, Kenady D, et al. A multicenter phase II study of tgDCC-E1A for the intratumoral treatment of patients with recurrent head and neck squamous cell carcinoma. Head Neck 2002; 24:661–669.

    Article  PubMed  Google Scholar 

  41. Myers JN, Mank-Seymour A, Zitvogel L, et al. Interleukin-12 gene therapy prevents establishment of SCC VII squamous cell carcinomas, inhibits tumor growth, and elicits long-term antitumor immunity in syngeneic C3H mice. Laryngoscope 1998; 108:261–268.

    Article  PubMed  CAS  Google Scholar 

  42. Lotze MT, Zitvogel L, Campbell R, et al. Cytokine gene therapy of cancer using interleukin-12: murine and clinical trials. Ann NY Acad Sci 1996; 795:440–454.

    Article  PubMed  CAS  Google Scholar 

  43. Atkins MB, Lotze MT, Dutcher JP, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 1999; 17:2105–2116.

    PubMed  CAS  Google Scholar 

  44. Urba SG, Forastiere AA, Wolf GT, Amrein PC. Intensive recombinant interleukin-2 and alpha-interferon therapy in patients with advanced head and neck squamous carcinoma. Cancer 1993; 71:2326–2331.

    Article  PubMed  CAS  Google Scholar 

  45. Li D, Jiang W, Bishop JS, Ralston R, O’Malley BWJ. Combination surgery and nonviral interleukin 2 gene therapy for head and neck cancer. Clin Cancer Res 1999; 5:1551–1556.

    PubMed  CAS  Google Scholar 

  46. O’Malley BWJ, Li D, Buckner A, Duan L, Woo SL, Pardoll DM. Limitations of adenovirus-mediated interleukin-2 gene therapy for oral cancer. Laryngoscope 1999; 109:389–395.

    Article  PubMed  CAS  Google Scholar 

  47. O’Malley BW, Cope KA, Chen SH, Li D, Schwarta MR, Woo SL. Combination gene therapy for oral cancer in a murine model. Cancer Res 1996; 56:1737–1741.

    PubMed  CAS  Google Scholar 

  48. Sewell DA, Li D, Duan L, Schwartz MR, O’Malley BWJ. Optimizing suicide gene therapy for head and neck cancer. Laryngoscope 1997; 107:t–5.

    Article  Google Scholar 

  49. O’Malley BWJ, Sewell DA, Li D, et al. The role of interleukin-2 in combination adenovirus gene therapy for head and neck cancer. Mol Endocrinol 1997; 11:667–673.

    Article  PubMed  CAS  Google Scholar 

  50. He Y, Zeng Q, Drenning SD, et al. Inhibition of human squamous cell carcinoma growth in vivo by epidermal growth factor receptor antisense RNA transcribed from the U6 promoter. J Natl Cancer Inst 1998; 90:1080–1087.

    Article  PubMed  CAS  Google Scholar 

  51. Benasso M, Merlano M, Blengio F, Cavallari M, Rosso R, Toma S. Concomitant alpha-interferon and chemotherapy in advanced squamous cell carcinoma of the head and neck. Am J Clin Oncol 1993; 16:465–468.

    Article  PubMed  CAS  Google Scholar 

  52. Trudeau M, Zukiwski A, Langleben A, Boos G, Batist G. A phase I study of recombinant human interferon alpha-2b combined with 5-fluorouracil and cisplatin in patients with advanced cancer. Cancer Chemother Pharmacol 1995; 35:496–500.

    Article  PubMed  CAS  Google Scholar 

  53. Hamasaki VK, Vokes EE. Interferons and other cytokines in head and neck cancer. Med Oncol 1995; 12:23–33.

    Article  PubMed  CAS  Google Scholar 

  54. Vlock DR, Andersen J, Kalish LA, et al. Phase II trial of interferon-alpha in locally recurrent or metastatic squamous cell carcinoma of the head and neck: immunological and clinical correlates. J Immunother Emphasis Tumor Immunol 1996; 19:433–442.

    PubMed  CAS  Google Scholar 

  55. Ferrantini M, Belardelli F. Gene therapy of cancer with interferon: lessons from tumor models and perspectives for clinical applications [In Process Citation]. Semin Cancer Biol 2000; 10:145–157.

    Article  PubMed  CAS  Google Scholar 

  56. Nelson WG, Simons JW, Mikhak B, et al. Cancer cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer as vaccines for the treatment of genitourinary malignancies. Cancer Chemother Pharmacol 2000; 46(Suppl):S67–S72.

    Article  PubMed  CAS  Google Scholar 

  57. Inoue A, Narumi K, Matsubara N, et al. Administration of wild-type p53 adenoviral vector synergistically enhances the cytotoxicity of anti-cancer drugs in human lung cancer cells irrespective of the status of p53 gene. Cancer Lett 2000; 157:105–112.

    Article  PubMed  CAS  Google Scholar 

  58. Ueno NT, Yu D, Hung MC. Chemosensitization of HER-2/neu-overexpressing human breast cancer cells to paclitaxel (Taxol) by adenovirus type 5 E1A. Oncogene 1997; 15:953–960.

    Article  PubMed  CAS  Google Scholar 

  59. Nemerow GR. Cell receptors involved in adenovirus entry. Virology 2000; 274:1–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Iskander, A., Yoo, G.H. (2005). Gene Therapy for Patients With Head and Neck Cancer. In: Adelstein, D.J. (eds) Squamous Cell Head and Neck Cancer. Current Clinical Oncology. Humana Press. https://doi.org/10.1007/978-1-59259-938-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-938-7_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-473-9

  • Online ISBN: 978-1-59259-938-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics