Skip to main content

Targeted Therapies in Head and Neck Cancer

  • Chapter
Squamous Cell Head and Neck Cancer

Abstract

Squamous cell carcinoma of the head and neck (HNSCC) can be treated with various modalities including radiotherapy, chemotherapy, and surgery. These are often employed in combination, with each playing a substantial and complementary role. Using a multidisciplinary approach, investigators have recently been able to achieve improved survival outcomes for patients with locally advanced, nonmetastatic disease—including both increased long-term survival rates (now approaching 70% in recent reports) (1]3) and organ preservation (4,5). Nevertheless, in approx 50% of high-risk patients tumors will recur (13,6), often with distant metastasis, making the cancer incurable and shifting the treatment goal toward palliation. In addition, short- and long-term toxicities of combination therapy are significant, with xerostomia, esophageal strictures, dysphagia, and increased aspiration risk commonly encountered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernier J, Domenge C, Ozsahin M, et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med 2004; 350:1945–1952.

    Article  PubMed  CAS  Google Scholar 

  2. Cooper JS, Pajak TF, Forastiere AA, et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med 2004; 350,:1937–1944.

    Article  PubMed  Google Scholar 

  3. Haraf DJ, Rosen FR, Stenson K, et al. Induction chemotherapy followed by concomitant TFHX chemoradiotherapy with reduced dose radiation in advanced head and neck cancer. Clin Cancer Res 2003; 9:5936–5943.

    PubMed  CAS  Google Scholar 

  4. Forastiere AA, Goepfert H, Maor M, et al. Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. N Engl J Med 2003; 349:2091–2098.

    Article  PubMed  CAS  Google Scholar 

  5. Saunders MI, Rojas AM. Management of cancer of the head and neck—a cocktail with your PORT? N Engl J Med 2004; 350:1997–1999.

    Article  PubMed  CAS  Google Scholar 

  6. Vokes EE, Stenson KM. Therapeutic options for laryngeal cancer. N Engl J Med 2003; 349:2087–2089.

    Article  PubMed  CAS  Google Scholar 

  7. Renan MJ. How many mutations are required for tumorigenesis? Implications from human cancer data. Mol Carcinog 1993; 7:139–146.

    Article  PubMed  CAS  Google Scholar 

  8. Gillison ML, Koch WM, Capone RB, et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst 2000; 92:709–720.

    Article  PubMed  CAS  Google Scholar 

  9. Brennan JA, Boyle JO, Koch WM, et al. Association between cigarette smoking and mutation of the p53 gene in squamous-cell carcinoma of the head and neck. N Engl J Med 1995; 332:712–717.

    Article  PubMed  CAS  Google Scholar 

  10. Koch WM, Lango M, Sewell D, Zahurak M, Sidransky D. Head and neck cancer in nonsmokers: a distinct clinical and molecular entity. Laryngoscope 1999; 109:1544–1551.

    Article  PubMed  CAS  Google Scholar 

  11. Mao L, Lee JS, Fan YH, et al. Frequent microsatellite alterations at chromosomes 9p21 and 3p14 in oral premalignant lesions and their value in cancer risk assessment. Nat Med 1996; 2:682–685.

    Article  PubMed  CAS  Google Scholar 

  12. Rosin MP, Lam WL, Poh C, et al. 3p14 and 9p21 loss is a simple tool for predicting second oral malignancy at previously treated oral cancer sites. Cancer Res 2002; 62:6447–6450.

    PubMed  CAS  Google Scholar 

  13. Koch WM, Brennan JA, Zahurak M, et al. p53 mutation and locoregional treatment failure in head and neck squamous cell carcinoma. J Natl Cancer Inst 1996; 88:1580–1586.

    Article  PubMed  CAS  Google Scholar 

  14. Boyle JO, Hakim J, Koch W, et al. The incidence of p53 mutations increases with progression of head and neck cancer. Cancer Res 1993; 53:4477–4480.

    PubMed  CAS  Google Scholar 

  15. Partridge M, Pateromichelakis S, Phillips E, Emilion G, Langdon J. Profiling clonality and progression in multiple premalignant and malignant oral lesions identifies a subgroup of cases with a distinct presentation of squamous cell carcinoma. Clin Cancer Res 2001; 7:1860–1866.

    PubMed  CAS  Google Scholar 

  16. Tabor MP, Brakenhoff RH, Ruijter-Schippers HJ, Kummer JA, Leemans CR, Braakhuis BJ. Genetically altered fields as origin of locally recurrent head and neck cancer: a retrospective study. Clin Cancer Res 2004; 10:3607–3613.

    Article  PubMed  CAS  Google Scholar 

  17. Braakhuis BJ, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH. A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res 2003; 63:1727–1730.

    PubMed  CAS  Google Scholar 

  18. Tabor MP, Brakenhoff RH, vanHouten VM, et al. Persistence of genetically altered fields in head and neck cancer patients: biological and clinical implications. Clin Cancer Res 2001; 7:1523–1532.

    PubMed  CAS  Google Scholar 

  19. Mao L, El-Naggar AK, Papadimitrakopoulou V, et al. Phenotype and genotype of advanced premalignant head and neck lesions after chemopreventive therapy. J Natl Cancer Inst 1998; 90:1545–1551.

    Article  PubMed  CAS  Google Scholar 

  20. Sudbo J, Lippman SM, Lee JJ, et al. The influence of resection and aneuploidy on mortality in oral leukoplakia. N Engl J Med 2004; 350:1405–1413.

    Article  PubMed  CAS  Google Scholar 

  21. Sudbo J, Kildal W, Risberg B, Koppang HS, Danielsen HE, Reith A. DNA content as a prognostic marker in patients with oral leukoplakia. N Engl J Med 2001; 344:1270–1278.

    Article  PubMed  CAS  Google Scholar 

  22. Pomerantz RG, Grandis JR. The role of epidermal growth factor receptor in head and neck squamous cell carcinoma. Curr Oncol Rep 2003; 5:140–146.

    Article  PubMed  Google Scholar 

  23. Shin DM, Ro JY, Hong WK, Hittelman WN. Dysregulation of epidermal growth factor receptor expression in premalignant lesions during head and neck tumorigenesis. Cancer Res 1994; 54:3153–3159.

    PubMed  CAS  Google Scholar 

  24. Rubin Grandis J, Tweardy DJ, Melhem MF. Asynchronous modulation of transforming growth factor alpha and epidermal growth factor receptor protein expression in progression of premalignant lesions to head and neck squamous cell carcinoma. Clin Cancer Res 1998; 4:13–20.

    PubMed  CAS  Google Scholar 

  25. Chen BK, Ohtsuki Y, Furihata M, et al. Co-overexpression of p53 protein and epidermal growth factor receptor in human papillary thyroid carcinomas correlated with lymph node metastasis, tumor size and clinicopathologic stage. Int J Oncol 1999; 15:893–898.

    PubMed  CAS  Google Scholar 

  26. Ang KK, Berkey BA, Tu X, et al. Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res 2002; 62:7350–7356.

    PubMed  CAS  Google Scholar 

  27. Etienne MC, Pivot X, Formento JL, et al. A multifactorial approach including tumoural epidermal growth factor receptor, p53, thymidylate synthase and dihydropyrimidine dehydrogenase to predict treatment outcome in head and neck cancer patients receiving 5-fluorouracil. Br J Cancer 1999; 79:1864–1869.

    Article  PubMed  CAS  Google Scholar 

  28. Rubin Grandis J, Melhem MF, Gooding WE, et al. Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst 1998; 90:824–832.

    Article  PubMed  CAS  Google Scholar 

  29. Gupta AK, McKenna WG, Weber CN, et al. Local recurrence in head and neck cancer: relationship to radiation resistance and signal transduction. Clin Cancer Res 2002; 8:885–892.

    PubMed  Google Scholar 

  30. Wu X, Fan Z, Masui H, Rosen N, Mendelsohn J. Apoptosis induced by an anti-epidermal growth factor receptor monoclonal antibody in a human colorectal carcinoma cell line and its delay by insulin. J Clin Invest 1995; 95:1897–1905.

    PubMed  CAS  Google Scholar 

  31. Busse D, Doughty RS, Ramsey TT, et al. Reversible G(1) arrest induced by inhibition of the epidermal growth factor receptor tyrosine kinase requires up-regulation of p27(KIP1) independent of MAPK activity. J Biol Chem 2000; 275:6987–6995.

    Article  PubMed  CAS  Google Scholar 

  32. Perrotte P, Matsumoto T, Inoue K, et al. Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin Cancer Res 1999; 5:257–265.

    PubMed  CAS  Google Scholar 

  33. Ciardiello F, Caputo R, Troiani T, et al. Antisense oligonucleotides targeting the epidermal growth factor receptor inhibit proliferation, induce apoptosis, and cooperate with cytotoxic drugs in human cancer cell lines. Int J Cancer 2001; 93:172–178.

    Article  PubMed  CAS  Google Scholar 

  34. Moyer JD, Barbacci EG, Iwata KK, et al. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res 1997; 57:4838–4848.

    PubMed  CAS  Google Scholar 

  35. Liu B, Fang M, Schmidt M, Lu Y, Mendelsohn J, Fan Z. Induction of apoptosis and activation of the caspase cascade by anti-EGF receptor monoclonal antibodies in DiFi human colon cancer cells do not involve the cjun N-terminal kinase activity. Br J Cancer 2000; 82:1991–1999.

    Article  PubMed  CAS  Google Scholar 

  36. Clark G.M. P-SR, Siu L.L., et al. Rash severity is predictive of increased survival in erlotinib HCI. Proc Am Soc Clin Oncol 2003; 22:196 (Abstract 786).

    Google Scholar 

  37. Kane MA, et al. Phase II study of 250 mg gefitinib in advanced squamous cell carcinoma of the head and neck (SCCHN). ASCO 2004, New Orleans, LA, abstract 5586.

    Google Scholar 

  38. Cohen EE, Rosen F, Stadler WM, et al. Phase II trial of ZD1839 in recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol 2003; 21:1980–1987.

    Article  PubMed  CAS  Google Scholar 

  39. Soulieres D, Senzer NN, Vokes EE, Hidalgo M, Agarwala SS, Siu LL. Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol 2004; 22:77–85.

    Article  PubMed  CAS  Google Scholar 

  40. Cohen MH, Williams GA, Sridhara R, et al. United States Food and Drug Administration Drug Approval summary: gefitinib (ZD1839; Iressa) tablets. Clin Cancer Res 2004; 10:1212–1218.

    Article  PubMed  CAS  Google Scholar 

  41. Shin DM, Donato NJ, Perez-Soler R, et al. Epidermal growth factor receptor-targeted therapy with C225 and cisplatin in patients with head and neck cancer. Clin Cancer Res 2001; 7:1204–1213.

    PubMed  CAS  Google Scholar 

  42. Baselga J, Pfister D, Cooper MR, et al. Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J Clin Oncol 2000; 18:904–914.

    PubMed  CAS  Google Scholar 

  43. Baselga J ea. Cetuximab (C225) plus cisplatin/carboplatin is active in patients (pts) with recurrent/metastatic squamous cell carcinoma of the head and neck (SCCHN) progressing on a same dose and schedule platinum-based regimen. Proc Am Soc Clin Oncol 2002; 21:226 (abstract 900).

    Google Scholar 

  44. Kies MS, et al. Final report of the efficacy and safety of the anti-epidermal growth factor antibody Erbitux (IMC-C225), in combination with cisplatin in patients with recurrent squamous cell carcinoma of the head and neck (SCCHN) refractory to cisplatin containing chemotherapy. Proc Am Soc Clin Oncol 2002; 21:232 (abstract 925).

    Google Scholar 

  45. Bonner JA, et al. Cetuximab prolongs survival in patients with locoregionally advanced squamous cell carcinoma of head and neck: a phase III study of high dose radiation therapy with or without cetuximab. ASCO 2004 Annual Meeting, New Orleans, abstract 5507.

    Google Scholar 

  46. Shepherd F. A randomized placebo-controlled trial of erlotinib in patients with advanced non-small cell lung cancer (NSCLC) following failure of 1st or 2nd line chemotherapy. A National Cancer Institute of Canada Clinical Trials Group (NCIC CTG) trial. ASCO, 2004.

    Google Scholar 

  47. Magne N, Fischel JL, Dubreuil A, et al. Influence of epidermal growth factor receptor (EGFR), p53 and intrinsic MAP kinase pathway status of tumour cells on the antiproliferative effect of ZD1839 (“Iressa”). Br J Cancer 2002; 86:1518–1523.

    Article  PubMed  CAS  Google Scholar 

  48. Magne N, Fischel JL, Dubreuil A, et al. Sequence-dependent effects of ZD1839 (‘Iressa’) in combination with cytotoxic treatment in human head and neck cancer. Br J Cancer 2002; 86:819–827.

    Article  PubMed  CAS  Google Scholar 

  49. Huang SM, Li J, Armstrong EA, Harari PM. Modulation of radiation response and tumor-induced angiogenesis after epidermal growth factor receptor inhibition by ZD1839 (Iressa). Cancer Res 2002; 62:4300–4306.

    PubMed  CAS  Google Scholar 

  50. Cohen EE, et al. A phase II study of 250-mg gefitinib (ZD1839) monotherapy in recurrent or metastatic squamous cell carcinoma of the head and neck (SCCHN). Proc Am Soc Clin Oncol 2003; 22:502.

    Google Scholar 

  51. Wirth LJ, et al. Phase I study of gefitinib plus celecoxib in patients with metastatic and/or locally recurrent squamous cell carcinoma of the head and neck (SCCHN). ASCO 2004 Annual Meeting New Orleans, abstract 5540.

    Google Scholar 

  52. Soulieres D, Senzer NN, Vokes EE, Hidalgo M, Agarwala SS, Siu LL. Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol 2004; 22:77–85.

    Article  PubMed  CAS  Google Scholar 

  53. Mauer AM, Cohen E.E., et al. Phase I study of epidermal growth factor receptor (EGFR) inhibitor erlotonib, and vascular endothelial growth factor monoclonal antibody, bevacizumab, in recurrent and/or metastatic squamous cell carcinoma of the head and neck (SCCHN). ASCO 2004 Annual Meeting, New Orleans, abstract 5539.

    Google Scholar 

  54. Folkman J. What is the evidence that tumors are angiogenesis dependent? (editorial). J Natl Cancer Inst 1990; 82:4–6.

    Article  PubMed  CAS  Google Scholar 

  55. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1:27–31.

    Article  PubMed  CAS  Google Scholar 

  56. Folkman J. Clinical applications of research on angiogenesis. N Engl J Med 1995; 333:1757–1763.

    Article  PubMed  CAS  Google Scholar 

  57. Folkman J, Hanahan D. Switch to the angiogenic phenotype during tumorigenesis. Princess Takamatsu Symp 1991; 22:339–347.

    PubMed  CAS  Google Scholar 

  58. Bouck N, Stellmach V, Hsu SC. How tumors become angiogenic. Adv Cancer Res 1996; 69:135–174.

    PubMed  CAS  Google Scholar 

  59. Hurwitz H, Cartwright T, Hainsworth J, et al. Bevacizumab (a monoclonal antibody to vascular endothelial growth factor) prolongs survival in first-line colorectal cancer (CRC): results of a phase III trial of bevacizumab in combination with bolus IFL (irinotecan, 5-fluorouracil, leucovorin) as first-line therapy in subjects with metastatic CRC. American Society of Clinical Oncology, Chicago, IL, June 2003, 2003.

    Google Scholar 

  60. Moriyama M, Kumagai S, Kawashiri S, Kojima K, Kakihara K, Yamamoto E. Immunohistochemical study of tumour angiogenesis in oral squamous cell carcinoma. Oral Oncol 1997; 33:369–374.

    Article  PubMed  CAS  Google Scholar 

  61. Denhart BC, Guidi AJ, Tognazzi K, Dvorak HF, Brown LF. Vascular permeability factor/vascular endothelial growth factor and its receptors in oral and laryngeal squamous cell carcinoma and dysplasia. Lab Invest 1997; 77:659–664.

    PubMed  CAS  Google Scholar 

  62. Inoue K, Ozeki Y, Suganuma T, Sugiura Y, Tanaka S. Vascular endothelial growth factor expression in primary esophageal squamous cell carcinoma. Association with angiogenesis and tumor progression. Cancer 1997; 79:206–213.

    Article  PubMed  CAS  Google Scholar 

  63. Petruzzelli GJ, Benefield J, Taitz AD, et al. Heparin-binding growth factor(s) derived from head and neck squamous cell carcinomas induce endothelial cell proliferations. Head Neck 1997; 19:576–582.

    Article  PubMed  CAS  Google Scholar 

  64. Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 1994; 367:576–59.

    Article  PubMed  CAS  Google Scholar 

  65. Riedel F, Gotte K, Li M, Hormann K, Grandis JR. Abrogation of VEGF expression in human head and neck squamous cell carcinoma decreases angiogenic activity in vitro and in vivo. Int J Oncol 2003; 23:577–583.

    PubMed  CAS  Google Scholar 

  66. Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993; 362:841–84.

    Article  PubMed  CAS  Google Scholar 

  67. Auerbach R, Arensman R, Kubai L, Folkman J. Tumor-induced angiogenesis: lack of inhibition by irradiation. Int J Cancer 1975; 15:241–245.

    Article  PubMed  CAS  Google Scholar 

  68. Kerbel RS. Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anti-cancer therapeutic agents. Bioessays 1991; 13:31–36.

    Article  PubMed  CAS  Google Scholar 

  69. Kakeji Y, Teicher BA. Preclinical studies of the combination of angiogenic inhibitors with cytotoxic agents. Invest New Drugs 1997; 15:39–48.

    Article  PubMed  CAS  Google Scholar 

  70. Koukourakis MI, Giatromanolaki A, Sivridis E, et al. Squamous cell head and neck cancer: evidence of angiogenic regeneration during radiotherapy. Anticancer Res 2001; 21:4301–4309.

    PubMed  CAS  Google Scholar 

  71. Mauceri HJ, Hanna NN, Beckett MA, et al. Combined effects of angiostatin and ionizing radiation in antitumour therapy. Nature 1998; 394:287–291.

    Article  PubMed  CAS  Google Scholar 

  72. Gorski DH, Mauceri HJ, Salloum RM, et al. Potentiation of the antitumor effect of ionizing radiation by brief concomitant exposures to angiostatin. Cancer Res 1998; 58:5686–5689.

    PubMed  CAS  Google Scholar 

  73. Gorski DH, Beckett MA, Jaskowiak NT, et al. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 1999; 59:3374–3378.

    PubMed  CAS  Google Scholar 

  74. Ning S, Laird D, Cherrington JM, Knox SJ. The antiangiogenic agents SU5416 and SU6668 increase the antitumor effects of fractionated irradiation. Radiat Res 2002; 157:45–51.

    Article  PubMed  CAS  Google Scholar 

  75. Katori H, Baba Y, Imagawa Y, et al. Reduction of in vivo tumor growth by MMI-166, a selective matrix metalloproteinase inhibitor, through inhibition of tumor angiogenesis in squamous cell carcinoma cell lines of head and neck. Cancer Lett 2002; 178:151–159.

    Article  PubMed  CAS  Google Scholar 

  76. Orhan G, Yigitbasi MNY, Bradley A, et al. Dual inhibition of EGFR and VEGFR in squamous cell carcinoma of the head and neck: the role of the new EGFR/VEGFR inhibitor NVP-AEE788. 2003 AACR-NCI-EORTC International Conference, Molecular Targets and Cancer Therapeutics, Boston, November 17–21, 2003.

    Google Scholar 

  77. Kawano T, Furukawa S, Matsuda H, et al. [Antitumor effect of the angiogenesis inhibitor, TNP470, on squamous cell carcinoma cells in head and neck cancer]. Nippon Jibiinkoka Gakkai Kaiho 2000; 103:821–828.

    PubMed  CAS  Google Scholar 

  78. Ueda N, Kamata N, Hayashi E, Yokoyama K, Hoteiya T, Nagayama M. Effects of an anti-angiogenic agent, TNP-470, on the growth of oral squamous cell carcinomas. Oral Oncol 1999; 35:554–60.

    Article  PubMed  CAS  Google Scholar 

  79. Zips D, Westphal J, Bruechner K, et al. Inhibition of VEGFR tyrosine kinase by ZK 222584/ptk 787 (PTK/ZK) combined with fractionated radiotherapy (RT) in human squamous cell carcinoma (hSCC) in nude mice. 14th EORTC-NCI-AACR Symposium, Molecular Targets and Cancer Therapeutics, Frankfurt, Germany, November 19–22, 2002.

    Google Scholar 

  80. Zahalsky AJ, et al. Phase II trial of SU5416 in patients with advanced incurable head and neck cancer. ASCO 2002 Annual Meeting New Orleans, abstract 902.

    Google Scholar 

  81. Zahalsky A, Wong RJ, Lis E, et al. Phase II trial of SU5416 in patients with advanced incurable head and neck cancer. American Society of Clinical Oncology Annual Meeting 2002:21.

    Google Scholar 

  82. Ratain MJ, et al. Preliminary antitumor activity of BAY 43-9006 in metastatic renal cell carcinoma and other advanced refractory solid tumors in a phase II randomized discontinuation trial (RDT). ASCO 2004 Annual Meeting, New Orleans, abstract 4501.

    Google Scholar 

  83. Ahmad T, et al. BAY 43-9006 in patients with advanced melanoma: the Royal Marsden experience. ASCO 2004 Annual Meeting, New Orleans, abstract 7506.

    Google Scholar 

  84. Flaherty KT, et al. Phase I/II trial of BAY 43-9006, carboplatin (C) and paclitaxel (P) demonstrates preliminary antitumor activity in the expansion cohort of patients with metastatic melanoma. ASCO 2004 Annual Meeting, New Orleans, abstract 7507.

    Google Scholar 

  85. Gustin DM, Haraf D, Stenson K, Dekker A, Stadler W, Vokes E. Phase I study of bevacizumab, fluorouracil, hydroxyurea and radiotherapy (B-FHX) for patients with poor prognosis head and neck cancer. Proceedings of the AACR, Washington, DC, 2003, vol. 44.

    Google Scholar 

  86. Zhong H, Chiles K, Feldser D, et al. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 2000; 60:1541–1545.

    PubMed  CAS  Google Scholar 

  87. Jiang BH, Jiang G, Zheng JZ, Lu Z, Hunter T, Vogt PK. Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ 2001; 12:363–469.

    PubMed  CAS  Google Scholar 

  88. Ciardiello F, Bianco R, Damiano V, et al. Antiangiogenic and antitumor activity of anti-epidermal growth factor receptor C225 monoclonal antibody in combination with vascular endothelial growth factor antisense oligonucleotide in human GEO colon cancer cells. Clin Cancer Res 2000; 6:3739–3747.

    PubMed  CAS  Google Scholar 

  89. Huang SM, Harari PM. Modulation of radiation response after epidermal growth factor receptor blockade in squamous cell carcinomas: inhibition of damage repair, cell cycle kinetics, and tumor angiogenesis. Clin Cancer Res 2000; 6:2166–2174.

    PubMed  CAS  Google Scholar 

  90. Bruns CJ, Harbison MT, Davis DW, et al. Epidermal growth factor receptor blockade with C225 plus gemcitabine results in regression of human pancreatic carcinoma growing orthotopically in nude mice by antiangiogenic mechanisms. Clin Cancer Res 2000; 6:1936–1948.

    PubMed  CAS  Google Scholar 

  91. Perrotte P, Matsumoto T, Inoue K, et al. Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin Cancer Res 1999; 5:257–265.

    PubMed  CAS  Google Scholar 

  92. Petit AM, Rak J, Hung MC, et al. Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol 1997; 151:1523–530.

    PubMed  CAS  Google Scholar 

  93. Huang SM, Li J, Armstrong EA, Harari PM. Modulation of radiation response and tumor-induced angiogenesis after epidermal growth factor receptor inhibition by ZD1839 (Iressa). Cancer Res 2002; 62:4300–4306.

    PubMed  CAS  Google Scholar 

  94. Ciardiello F, Caputo R, Bianco R, et al. Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res 2001; 7:1459–1465.

    PubMed  CAS  Google Scholar 

  95. Viloria-Petit A, Crombet T, Jothy S, et al. Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Res 2001; 61:5090–5101.

    PubMed  CAS  Google Scholar 

  96. Ciardiello RB, Caputo R, Caputo R, et al. Antitumor activity of ZD6474, a small molecule VEGF receptor tyrosine kinase inhibitor, in human cancer cells with acquired resistance to EGF receptor-targeted drugs. Proc Am Soc Clin Oncol, Chicago, IL,2003, vol. 22.

    Google Scholar 

  97. Peters LJ. Targeting hypoxia in head and neck cancer. Acta Oncol 2001; 40:937–940.

    Article  PubMed  CAS  Google Scholar 

  98. Brizel DM, Dodge RK, Clough RW, Dewhirst MW. Oxygenation of head and neck cancer: changes during radiotherapy and impact on treatment outcome. Radiother Oncol 1999; 53:113–117.

    Article  PubMed  CAS  Google Scholar 

  99. Brizel DM, Sibley GS, Prosnitz LR, Scher RL, Dewhirst MW. Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 1997; 38:285–289.

    Article  PubMed  CAS  Google Scholar 

  100. Brown JM. Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies. Mol Med Today 2000; 6:157–162.

    Article  PubMed  CAS  Google Scholar 

  101. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003; 3:721–732.

    Article  PubMed  CAS  Google Scholar 

  102. Semenza GL. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 2002; 8:S62–S67.

    Article  PubMed  CAS  Google Scholar 

  103. Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 2003; 3:347–361.

    Article  PubMed  Google Scholar 

  104. Mottet D, Dumont V, Deccache Y, et al. Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells. J Biol Chem 2003; 278:31,277–31,285.

    Article  PubMed  CAS  Google Scholar 

  105. Ema M, Hirota K, Mimura J, et al. Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. EMBO J 1999; 18:1905–1914.

    Article  PubMed  CAS  Google Scholar 

  106. Welsh SJ, Bellamy WT, Briehl MM, Powis G. The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Res 2002; 62:5089–5095.

    PubMed  CAS  Google Scholar 

  107. Welsh SJ, Williams RR, Birmingham A, Newman DJ, Kirkpatrick DL, Powis G. The thioredoxin redox inhibitors 1-methylpropyl 2-imidazolyl disulfide and pleurotin inhibit hypoxia-induced factor 1alpha and vascular endothelial growth factor formation. Mol Cancer Ther 2003; 2:235–243.

    PubMed  CAS  Google Scholar 

  108. Mukherjee A, Westwell AD, Stevens MF, Martin SG. Characterizing the anti-tumor and anti-angiogenic activity of AW 464 (NSC 706704), a novel thioredoxin inhibitor, 2003 AACR-NCI-EORTC International Conference, Molecular Targets and Cancer Therapeutics, Boston, November 17–21, 2003

    Google Scholar 

  109. Welsh SJ, Berggren M, Kirkpatrick DL, Powis G. The antitumor activity of PX-478, an inhibitor of hypoxia-inducible factor-1a (HIF-1a) is associated with decreased tumor HIF-1a and plasma VEGF, Proceedings of the AACR, Washington, DC, 2003, vol. 44.

    Google Scholar 

  110. Koukourakis MI, Giatromanolaki A, Sivridis E, et al. Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. Int J Radiat Oncol Biol Phys 2002; 53:1192–1202.

    Article  PubMed  CAS  Google Scholar 

  111. Hui EP, Chan AT, Pezzella F, et al. Coexpression of hypoxia-inducible factors 1alpha and 2alpha, carbonic anhydrase IX, and vascular endothelial growth factor in nasopharyngeal carcinoma and relationship to survival. Clin Cancer Res 2002; 8:2595–2604.

    PubMed  CAS  Google Scholar 

  112. Ueno T, Higashino F, Kohgo T, Shindoh M. Expression of HIF-1a in squamous cell carcinoma of the tongue: a new parameter for predicting cancer cell metastasis. Proceedings of the AACR, July 2003, vol. 44.

    Google Scholar 

  113. Nordsmark M, Overgaard J. The prognostic value of pO2 measurements and endogeneous hypoxia marker HIF-a in advanced head and neck cancers. Proceedings of the AACR, July 2003, vol. 44.

    Google Scholar 

  114. Plowman J, Dykes DJ, Narayanan VL, et al. Efficacy of the quinocarmycins KW2152 and DX-52-1 against human melanoma lines growing in culture kand in mice. Cancer Res 1995; 55:862–867.

    PubMed  CAS  Google Scholar 

  115. Lunt SJ, Stratford IJ. The efficacy of small molecule inhibitors of HIF-1 on overall metastases presentation, hypoxic fraction, and HIF-1 mediated gene expression. 2003 AACR-NCI-EORTC International Conference, Molecular Targets and Cancer Therapeutics, Boston, November 17–21, 2003.

    Google Scholar 

  116. Brown LM, Cowen R, Melillo G, Sausville E, Stratford IJ. The potential therapeutic application of targeting HIF-1 using gene therapy or small molecule approaches. Proceedings of the AACR, Washington, DC, 2003, vol. 44.

    Google Scholar 

  117. Sattler M, Ma PC, Salgia R. Therapeutic targeting of the receptor tyrosine kinase Met. Cancer Treat Res 2004; 119:121–138.

    PubMed  CAS  Google Scholar 

  118. Ma PC, Maulik G, Christensen J, Salgia R. c-Met: structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev 2003; 22:309–325.

    Article  PubMed  CAS  Google Scholar 

  119. http://www.vai.org/vari/metandcancer/index.aspx.

  120. Uchida D, Kawamata H, Omotehara F, et al. Role of HGF/c-met system in invasion and metastasis of oral squamous cell carcinoma cells in vitro and its clinical significance. Int J Cancer 2001; 93:489–496.

    Article  PubMed  CAS  Google Scholar 

  121. Aebersold DM, Kollar A, Beer KT, Laissue J, Greiner RH, Djonov V. Involvement of the hepatocyte growth factor/scatter factor receptor c-met and of Bcl-xL in the resistance of oropharyngeal cancer to ionizing radiation. Int J Cancer 2001; 96:41–54.

    Article  PubMed  CAS  Google Scholar 

  122. Morello S, Olivero M, Aimetti M, et al. MET receptor is overexpressed but not mutated in oral squamous cell carcinomas. J Cell Physiol 2001; 189:285–290.

    Article  PubMed  CAS  Google Scholar 

  123. Aebersold DM, Landt O, Berthou S, et al. Prevalence and clinical impact of Met Y1253D-activating point mutation in radiotherapy-treated squamous cell cancer of the oropharynx. Oncogene 2003; 22:8519–8523.

    Article  PubMed  CAS  Google Scholar 

  124. Di Renzo MF, Olivero M, Martone T, et al. Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene 2000; 19:1547–1555.

    Article  PubMed  CAS  Google Scholar 

  125. Zeng Q, Chen S, You Z, et al. Hepatocyte growth factor inhibits anoikis in head and neck squamous cell carcinoma cells by activation of ERK and Akt signaling independent of NFkappa B. J Biol Chem 2002; 277:25,203–25,208.

    Article  PubMed  CAS  Google Scholar 

  126. Fleigel J, Sedwick J, Kornberg LJ. Hepatocyte growth factor/scatter factor stimulates mitogenesis and migration of a head and neck squamous cell carcinoma cell line. Otolaryngol Head Neck Surg 2002; 127:271–278.

    Article  PubMed  Google Scholar 

  127. Dong G, Chen Z, Li ZY, Yeh NT, Bancroft CC, Van Waes C. Hepatocyte growth factor/scatter factor-induced activation of MEK and PI3K signal pathways contributes to expression of proangiogenic cytokines interleukin-8 and vascular endothelial growth factor in head and neck squamous cell carcinoma. Cancer Res 2001; 61:5911–5918.

    PubMed  CAS  Google Scholar 

  128. Sattler M, Pride YB, Ma P, et al. A novel small molecule met inhibitor induces apoptosis in cells transformed by the oncogenic TPR-MET tyrosine kinase. Cancer Res 2003; 63:5462–5469.

    PubMed  CAS  Google Scholar 

  129. Christensen JG, Schreck R, Burrows J, et al. A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Res 2003; 63:7345–7355.

    PubMed  CAS  Google Scholar 

  130. Ehrlichman C, et al. A phase I trial of 17-allylamino-geldanamycin (17AAG) in patients with advanced cancer. ASCO 2004 Annual Meeting, New Orleans, abstract 3030.

    Google Scholar 

  131. Solit D, B., et al. Phase I trial of 17-AAG (17-allylamino-17-demethoxygeldanamycin) in patients (pts) with advanced cancer. ASCO 2003 Annual Meeting, New Orleans, abstract 795.

    Google Scholar 

  132. Brunner TB, Gupta AK, Shi Y, et al. Farnesyltransferase inhibitors as radiation sensitizers. Int J Radiat Biol 2003; 79:569–576.

    Article  PubMed  CAS  Google Scholar 

  133. Hahn SM, Bernhard EJ, Regine W, et al. A Phase I trial of the farnesyltransferase inhibitor L-778,123 and radiotherapy for locally advanced lung and head and neck cancer. Clin Cancer Res 2002; 8:1065–1072.

    PubMed  CAS  Google Scholar 

  134. Kies M, Clayman GL, El-Naggar AK, et al. Induction Therapy with SCH 66336, a Farnesyltransferase Inhibitor, in Squamous Cell Carcinoma (SCC) of the Head and Neck. American Society of Clinical Oncology Annual Meeting, San Francisco, CA, 2001, vol. 20.

    Google Scholar 

  135. Riva C, Lavieille JP, Reyt E, Brambilla E, Lunardi J, Brambilla C. Differential c-myc, c-jun, c-raf and p53 expression in squamous cell carcinoma of the head and neck: implication in drug and radioresistance. Eur J Cancer B Oral Oncol 1995; 31B:384–391.

    Article  PubMed  CAS  Google Scholar 

  136. Lyons JF, Wilhelm S, Hibner B, Bollag G. Discovery of a novel Raf kinase inhibitor. Endocr Relat Cancer 2001; 8:219–225.

    Article  PubMed  CAS  Google Scholar 

  137. Lee JT, McCubrey JA. BAY-43-9006 Bayer/Onyx. Curr Opin Investig Drugs 2003; 4:757–763.

    PubMed  CAS  Google Scholar 

  138. Awada AHA, Gil T, Munoz R, et al. Final results of a clinical and pharmacokinetic (PK) phase I study of the Raf kinase inhibitor BAY 43-9006 in refractory solid cancers: a promising anti-tumor agent. 14th EORTCNCI-AACR Symposium, Molecular Targets and Cancer Therapeutics, Frankfurt, Germany, November 19–22, 2002.

    Google Scholar 

  139. Redon R, Muller D, Caulee K, Wanherdrick K, Abecassis J, du Manoir S. A simple specific pattern of chromosomal aberrations at early stages of head and neck squamous cell carcinomas: PIK3CA but not p63 gene as a likely target of 3q26-qter gains. Cancer Res 2001; 61:4122–4129.

    PubMed  CAS  Google Scholar 

  140. Singh B, Reddy PG, Goberdhan A, et al. p53 regulates cell survival by inhibiting PIK3CA in squamous cell carcinomas. Genes Dev 2002; 16:984–993.

    Article  PubMed  CAS  Google Scholar 

  141. Woenckhaus J, Steger K, Werner E, et al. Genomic gain of PIK3CA and increased expression of p110alpha are associated with progression of dysplasia into invasive squamous cell carcinoma. J Pathol 2002; 198:335–342.

    Article  PubMed  CAS  Google Scholar 

  142. Worsham MJ, Pals G, Schouten JP, et al. Delineating genetic pathways of disease progression in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 2003; 129:702–708.

    Article  PubMed  Google Scholar 

  143. Chmura SJ, Dolan ME, Cha A, Mauceri HJ, Kufe DW, Weichselbaum RR. In vitro and in vivo activity of protein kinase C inhibitor chelerythrine chloride induces tumor cell toxicity and growth delay in vivo. Clin Cancer Res 2000; 6:737–742.

    PubMed  CAS  Google Scholar 

  144. Hoffmann TK, Leenen K, Hafner D, et al. Antitumor activity of protein kinase C inhibitors and cisplatin in human head and neck squamous cell carcinoma lines. Anticancer Drugs 2002; 13:93–100.

    Article  PubMed  CAS  Google Scholar 

  145. Cohen EEW GS, Rosner MR. The effects of protein kinase C zeta inhibition on MAPK activation and growth in squamous cell carcinoma of the head and neck (SCCHN). Annual Meeting of the American Association of Cancer Research, Washington, DC, 2003, vol. 44.

    Google Scholar 

  146. Boyle JO, Hakim J, Koch W, et al. The incidence of p53 mutations increases with progression of head and neck cancer. Cancer Res 1993; 53:4477–4480.

    PubMed  CAS  Google Scholar 

  147. Koch WM, Brennan JA, Zahurak M, et al. p53 mutation and locoregional treatment failure in head and neck squamous cell carcinoma. J Natl Cancer Inst 1996; 88:1580–1586.

    Article  PubMed  CAS  Google Scholar 

  148. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000; 408:307–310.

    Article  PubMed  CAS  Google Scholar 

  149. Bischoff JR, Kirn DH, Williams A, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274:373–376.

    Article  PubMed  CAS  Google Scholar 

  150. Cohen EE, Rudin CM. ONYX-015. Onyx Pharmaceuticals. Curr Opin Investig Drugs 2001; 2:1770–1775.

    PubMed  CAS  Google Scholar 

  151. Nemunaitis J, Khuri F, Ganly I, et al. Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J Clin Oncol 2001; 19:289–298.

    PubMed  CAS  Google Scholar 

  152. Khuri FR, Nemunaitis J, Ganly I, et al. a controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med 2000; 6:879–885.

    Article  PubMed  CAS  Google Scholar 

  153. Rudin CM, Cohen EE, Papadimitrakopoulou VA, et al. An attenuated adenovirus, ONYX-015, as mouthwash therapy for premalignant oral dysplasia. J Clin Oncol 2003.

    Google Scholar 

  154. Clayman GL, Frank DK, Bruso PA, Goepfert H. Adenovirus-mediated wild-type p53 gene transfer as a surgical adjuvant in advanced head and neck cancers. Clin Cancer Res 1999; 5:1715–1722.

    PubMed  CAS  Google Scholar 

  155. Clayman GL, el-Naggar AK, Lippman SM, et al. Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma. J Clin Oncol 1998; 16:2221–2232.

    PubMed  CAS  Google Scholar 

  156. Mobley SR, Liu TJ, Hudson JM, Clayman GL. In vitro growth suppression by adenoviral transduction of p21 and p16 in squamous cell carcinoma of the head and neck: a research model for combination gene therapy. Arch Otolaryngol Head Neck Surg 1998; 124:88–92.

    PubMed  CAS  Google Scholar 

  157. Wolf JK, Kim TE, Fightmaster D, et al. Growth suppression of human ovarian cancer cell lines by the introduction of a p16 gene via a recombinant adenovirus. Gynecol Oncol 1999; 73:27–34.

    Article  PubMed  CAS  Google Scholar 

  158. Rocco JW, Li D, Liggett WH, Jr., et al. p16INK4A adenovirus-mediated gene therapy for human head and neck squamous cell cancer. Clin Cancer Res 1998; 4:1697–1704.

    PubMed  CAS  Google Scholar 

  159. Schreinemachers DM, Everson RB. Aspirin use and lung, colon, and breast cancer incidence in a prospective study. Epidemiology 1994; 5:138–146.

    Article  PubMed  CAS  Google Scholar 

  160. Giovannucci E, Egan KM, Hunter DJ, et al. Aspirin and the risk of colorectal cancer in women. N Engl J Med 1995; 333:609–614.

    Article  PubMed  CAS  Google Scholar 

  161. Rao CV, Rivenson A, Simi B, et al. Chemoprevention of colon carcinogenesis by sulindac, a nonsteroidal anti-inflammatory agent. Cancer Res 1995; 55:1464–1472.

    PubMed  CAS  Google Scholar 

  162. Giardiello FM, Hamilton SR, Krush AJ, et al. Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N Engl J Med 1993; 328:1313–1316.

    Article  PubMed  CAS  Google Scholar 

  163. Steinbach G, Lynch PM, Phillips RK, et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 2000; 342:1946–1952.

    Article  PubMed  CAS  Google Scholar 

  164. Thun MJ, Namboodiri MM, Heath CW, Jr. Aspirin use and reduced risk of fatal colon cancer. N Engl J Med 1991; 325:1593–1596.

    Article  PubMed  CAS  Google Scholar 

  165. Church RD, Fleshman JW, McLeod HL. Cyclo-oxygenase 2 inhibition in colorectal cancer therapy. Br J Surg 2003; 90:1055–1067.

    Article  PubMed  CAS  Google Scholar 

  166. Mohan S, Epstein JB. Carcinogenesis and cyclooxygenase: the potential role of COX-2 inhibition in upper aerodigestive tract cancer. Oral Oncol 2003; 39:537–546.

    Article  PubMed  CAS  Google Scholar 

  167. Lin DT, Subbaramaiah K, Shah JP, Dannenberg AJ, Boyle JO. Cyclooxygenase-2: a novel molecular target for the prevention and treatment of head and neck cancer. Head Neck 2002; 24:792–799.

    Article  PubMed  Google Scholar 

  168. Chan G, Boyle JO, Yang EK, et al. Cyclooxygenase-2 expression is up-regulated in squamous cell carcinoma of the head and neck. Cancer Res 1999; 59:991–994.

    PubMed  CAS  Google Scholar 

  169. Kawamori T, Rao CV, Seibert K, Reddy BS. Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, against colon carcinogenesis. Cancer Res 1998; 58:409–412.

    PubMed  CAS  Google Scholar 

  170. Oshima M, Murai N, Kargman S, et al. Chemoprevention of intestinal polyposis in the Apcdelta716 mouse by rofecoxib, a specific cyclooxygenase-2 inhibitor. Cancer Res 2001; 61:1733–740.

    PubMed  CAS  Google Scholar 

  171. Harris RE, Alshafie GA, Abou-Issa H, Seibert K. Chemoprevention of breast cancer in rats by celecoxib, a cyclooxygenase 2 inhibitor. Cancer Res 2000; 60:2101–2103.

    PubMed  CAS  Google Scholar 

  172. Sawaoka H, Kawano S, Tsuji S, et al. Cyclooxygenase-2 inhibitors suppress the growth of gastric cancer xenografts via induction of apoptosis in nude mice. Am J Physiol 1998; 274:G1061–1067.

    PubMed  CAS  Google Scholar 

  173. Nishimura G, Yanoma S, Mizuno H, Kawakami K, Tsukuda M. A selective cyclooxygenase-2 inhibitor suppresses tumor growth in nude mouse xenografted with human head and neck squamous carcinoma cells. Jpn J Cancer Res 1999; 90:1152–1162.

    PubMed  CAS  Google Scholar 

  174. Sheng H, Shao J, Kirkland SC, et al. Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2. J Clin Invest 1997; 99:2254–2259.

    Article  PubMed  CAS  Google Scholar 

  175. Liu XH, Kirschenbaum A, Yao S, Lee R, Holland JF, Levine AC. Inhibition of cyclooxygenase-2 suppresses angiogenesis and the growth of prostate cancer in vivo. J Urol 2000; 164:820–825.

    Article  PubMed  CAS  Google Scholar 

  176. Shiotani H, Denda A, Yamamoto K, et al. Increased expression of cyclooxygenase-2 protein in 4-nitroquinoline-1-oxide-induced rat tongue carcinomas and chemopreventive efficacy of a specific inhibitor, nimesulide. Cancer Res 2001; 61:1451–1456.

    PubMed  CAS  Google Scholar 

  177. Nishimura G, Yanoma S, Satake K, et al. An experimental model of tumor dormancy therapy for advanced head and neck carcinoma. Jpn J Cancer Res 2000; 91:1199–1203.

    PubMed  CAS  Google Scholar 

  178. Petersen C, Petersen S, Milas L, Lang FF, Tofilon PJ. Enhancement of intrinsic tumor cell radiosensitivity induced by a selective cyclooxygenase-2 inhibitor. Clin Cancer Res 2000; 6:2513–2520.

    PubMed  CAS  Google Scholar 

  179. Kishi K, Petersen S, Petersen C, et al. Preferential enhancement of tumor radioresponse by a cyclooxygenase-2 inhibitor. Cancer Res 2000; 60:1326–1331.

    PubMed  CAS  Google Scholar 

  180. Pyo H, Choy H, Amorino GP, et al. A selective cyclooxygenase-2 inhibitor, NS-398, enhances the effect of radiation in vitro and in vivo preferentially on the cells that express cyclooxygenase-2. Clin Cancer Res 2001; 7:2998–3005.

    PubMed  CAS  Google Scholar 

  181. Choy H, Milas L. Enhancing radiotherapy with cyclooxygenase-2 enzyme inhibitors: a rational advance? J Natl Cancer Inst 2003; 95:1440–1452.

    PubMed  CAS  Google Scholar 

  182. Naujokat C, Hoffmann S. Role and function of the 26S proteasome in proliferation and apoptosis. Lab Invest 2002; 82:965–980.

    PubMed  CAS  Google Scholar 

  183. Spataro V, Norbury C, Harris AL. The ubiquitin-proteasome pathway in cancer. Br J Cancer 1998; 77:448–455.

    PubMed  CAS  Google Scholar 

  184. Hochstrasser M. Ubiquitin-dependent protein degradation. Annu Rev Genet 1996; 30:405–439.

    Article  PubMed  CAS  Google Scholar 

  185. Wilkinson KD. Ubiquitin-dependent signaling: the role of ubiquitination in the response of cells to their environment. J Nutr 1999; 129:1933–1936.

    PubMed  CAS  Google Scholar 

  186. Masdehors P, Omura S, Merle-Beral H, et al. Increased sensitivity of CLL-derived lymphocytes to apoptotic death activation by the proteasome-specific inhibitor lactacystin. Br J Haematol 1999; 105:752–757.

    Article  PubMed  CAS  Google Scholar 

  187. Delic J, Masdehors P, Omura S, et al. The proteasome inhibitor lactacystin induces apoptosis and sensitizes chemo-and radioresistant human chronic lymphocytic leukaemia lymphocytes to TNF-alpha-initiated apoptosis. Br J Cancer 1998; 77:1103–1107.

    PubMed  CAS  Google Scholar 

  188. Kudo Y, Takata T, Ogawa I, et al. p27Kip1 accumulation by inhibition of proteasome function induces apoptosis in oral squamous cell carcinoma cells. Clin Cancer Res 2000; 6:916–923.

    PubMed  CAS  Google Scholar 

  189. Orlowski RZ, Eswara JR, Lafond-Walker A, Grever MR, Orlowski M, Dang CV. Tumor growth inhibition induced in a murine model of human Burkitt’s lymphoma by a proteasome inhibitor. Cancer Res 1998; 58:4342–4348.

    PubMed  CAS  Google Scholar 

  190. Murray RZ, Norbury C. Proteasome inhibitors as anti-cancer agents. Anticancer Drugs 2000; 11:407–417.

    Article  PubMed  CAS  Google Scholar 

  191. Richardson PG, Hideshima T, Anderson KC. Bortezomib (PS-341): a novel, first-in-class proteasome inhibitor for the treatment of multiple myeloma and other cancers. Cancer Control 2003; 10:361–369.

    PubMed  Google Scholar 

  192. Sunwoo JB, Chen Z, Dong G, et al. Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin Cancer Res 2001; 7:1419–1428.

    PubMed  CAS  Google Scholar 

  193. Russo SM, Tepper JE, Baldwin AS, Jr., et al. Enhancement of radiosensitivity by proteasome inhibition: implications for a role of NF-kappaB. Int J Radiat Oncol Biol Phys 2001; 50:183–193.

    Article  PubMed  CAS  Google Scholar 

  194. Pajonk F, Pajonk K, McBride WH. Apoptosis and radiosensitization of hodgkin cells by proteasome inhibition. Int J Radiat Oncol Biol Phys 2000; 47:1025–1032.

    Article  PubMed  CAS  Google Scholar 

  195. Pervan M, Pajonk F, Sun JR, Withers HR, McBride WH. Molecular pathways that modify tumor radiation response. Am J Clin Oncol 2001; 24:481–485.

    Article  PubMed  CAS  Google Scholar 

  196. Lebowitz PF, Conley B, Headlee D, et al. Concomitant therapy with proteasome inhibitor, bortezomib, and radiation in patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC). American Society of Clinical Oncology Annual Meeting, Chicago, IL, 2003, vol. 22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Seiwert, T.Y., Cohen, E.E.W. (2005). Targeted Therapies in Head and Neck Cancer. In: Adelstein, D.J. (eds) Squamous Cell Head and Neck Cancer. Current Clinical Oncology. Humana Press. https://doi.org/10.1007/978-1-59259-938-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-938-7_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-473-9

  • Online ISBN: 978-1-59259-938-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics