Skip to main content

Platelet Function Studies

  • Chapter
Platelet Function

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1320 Accesses

Abstract

Platelets play an essential role in hemostasis and thrombosis (1). A defect in platelet function can result in platelets that are unresponsive or hypersensitive. Characterization of a defect is an important first step in the treatment of the disorder. Although defects usually present as bleeding or bruising, the existence of a defect is not always obvious. This is particularly a problem with thrombocytopenia, owing to heparin or a glycoprotein (GP)IIb-IIIa antagonist. In these cases the bleeding may be mistaken for the pharmacological effects of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. George JN. Platelets. Lancet 2000;355:1531–1539.

    PubMed  CAS  Google Scholar 

  2. Clemetson K, Clemetson J. Molecular abnormalities in Glanzmann’s thrombasthenia, Bernard-Soulier syndrome, and platelet-type von Willebrand’s disease. Curr Opin Hematol 1994;1:388–393.

    PubMed  CAS  Google Scholar 

  3. Coller B, Seligsohn U, Peretz H, Newman P. Glanzmann thrombasthenia: new insights from an historical perspective. Semin Hematol 1994;31:301–311.

    PubMed  CAS  Google Scholar 

  4. Lopez JA, Andrews RK, Afshar-Kharghan V, Berndt MC. Bernard-Soulier syndrome. Blood 1998;91:4397–4418.

    PubMed  CAS  Google Scholar 

  5. Awtry EH, Loscalzo J. Aspirin. Circulation 2000;101:1206–1218.

    PubMed  CAS  Google Scholar 

  6. Mehta SR, Yusuf S, Peters RJG, et al. Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: the PCI-CURE study. Lancet 2001;358:527–533.

    PubMed  CAS  Google Scholar 

  7. Topol EJ, Byzova TV, Plow EF. Platelet GPIIb-IIIa blockers. Lancet 1999;353:227–231.

    PubMed  CAS  Google Scholar 

  8. Corti R, Farkouh ME, Badimon JJ. The vulnerable plaque and acute coronary syndromes. Am J Med 2002;113:668–680.

    PubMed  Google Scholar 

  9. Sane DC, Damaraju LV, Topol EJ, et al. Occurrence and clinical significance of pseudothrombocytopenia during abciximab therapy. J Am Coll Cardiol 2000;36:75–83.

    PubMed  CAS  Google Scholar 

  10. Ault KA, Rinder HM, Mitchell J, Carmody MB, Vary CP, Hillman RS. The significance of platelets with increased RNA content (reticulated platelets). A measure of the rate of thrombopoiesis. Am J Clin Pathol 1992;98:637–646.

    PubMed  CAS  Google Scholar 

  11. Kelton JG. Heparin-induced thrombocytopenia: an overview. Blood Rev 2002;16:77–80.

    PubMed  CAS  Google Scholar 

  12. Billheimer JT, Dicker IB, Wynn R, et al. Evidence that thrombocytopenia observed in humans treated with orally bioavailable glycoprotein IIb/IIIa antagonists is immune mediated. Blood 2002;99:3540–3546.

    PubMed  CAS  Google Scholar 

  13. Peterson JA, Nyree CE, Newman PJ, Aster RH. A site involving the “hybrid” and PSI homology domains of GPIIIa (beta 3-integrin subunit) is a common target for antibodies associated with quinine-induced immune thrombocytopenia. Blood 2003;101:937–942.

    PubMed  CAS  Google Scholar 

  14. Ault K. Flow cytometric analysis of platelets. In: Bauer K, Duque R, Shankey T, eds. Clinical Flow Cytometry—Principles and Application: Williams & Wilkins, Baltimore, 1993, pp. 387–403.

    Google Scholar 

  15. Bessos H, Perez S, Armstrong-Fisher S, Urbaniak S, Turner M. The development of a quantitative ELISA for antibodies against human platelet antigen type 1a. Transfusion 2003;43:350–356.

    PubMed  CAS  Google Scholar 

  16. Griffiths E, Dzik W. Assays for heparin-induced thrombocytopenia. Transfusion Med 1997;7:1–11.

    CAS  Google Scholar 

  17. Nguyen P, Lecompte T. Heparin-induced thrombocytopenia: a survey of tests employed and attitudes in haematology laboratories. NR Fr Hematol 1994;36:353–357.

    CAS  Google Scholar 

  18. Born G. The aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962;194:927.

    PubMed  CAS  Google Scholar 

  19. Kereiakes D, Broderick T, Roth E, et al. High platelet count in platelet-rich plasma reduces measured platelet inhibition by abciximab but not tirofiban nor eptifibatide glycoprotein IIb/IIIa receptor antagonists. J Thromb Thrombol 2000;9:149–155.

    CAS  Google Scholar 

  20. Nicholson N, Panzer-Knodle S, Haas N, et al. Assessment of platelet function assays. Am Heart J 1998;135:S170–S178.

    PubMed  CAS  Google Scholar 

  21. Siess W. Molecular mechanisms of platelet activation. Physiol Rev 1989;69:58–178.

    PubMed  CAS  Google Scholar 

  22. Mazzucato M, Marco L, Masotti A, Pradella P, Bahou W, Ruggeri Z. Characterization of the initial alpha-thrombin interaction with glycoprotein Ib alpha in relation to platelet activation. J Biol Chem 1998;273:1880–1887.

    PubMed  CAS  Google Scholar 

  23. Furman M, Liu L, Benoit S, Becker R, Barnard M, Michelson A. The cleaved peptide of the thrombin receptor is a strong platelet agonist. Proc Natl Acad Sci USA 1998;95:3082–3087.

    PubMed  CAS  Google Scholar 

  24. Inoue K, Ozaki Y, Satoh K, Wu Y, Yatomi Y, Shin Y, Morita T. Signal transduction pathways mediated by glycoprotein Ia/IIa in human platelets: comparison with those of glycoprotein VI. Biochem Biophys Res Commun 1999;256:114–120.

    PubMed  CAS  Google Scholar 

  25. Baurand A, Eckly A, Bari N, et al. Desensitization of the platelet aggregation response to ADP: differential down-regulation of the P2Y1 and P2cyc receptors. Thromb Haemost 2000;84:484–491.

    PubMed  CAS  Google Scholar 

  26. Berndt M, Du X, Booth W. Ristocetin-dependent reconstitution of binding of von Willebrand factor to purified human platelet membrane glycoprotein Ib-IX complex. Biochemistry 1988;27:633–640.

    PubMed  CAS  Google Scholar 

  27. Thomas K, Tune E, Choong S. Parallel determination of von Willebrand factor—ristocetin and botrocetin cofactors. Thromb Res 1994;75:401–408.

    PubMed  CAS  Google Scholar 

  28. Andrews R, Booth W, Gorman J, Castaldi P, Berndt M. Purification of botrocetin from Bothrops jararaca venom. Analysis of the botrocetin-mediated interaction between von Willebrand factor and the human platelet membrane glycoprotein Ib-IX complex. Biochemistry 1989;28:8317–8326.

    PubMed  CAS  Google Scholar 

  29. Glusa E, Markwardt F. Platelet functions in recombinant hirudin-anticoagulated blood. Haemostasis 1990;20:112–118.

    PubMed  CAS  Google Scholar 

  30. Cox D, Douglas C, Preston F. The effects of anticoagulation on platelet aggregation. Thromb Haemost 1997;77:301.

    Google Scholar 

  31. Phillips D, Teng W, Arfsten A, et al. Effect of Ca2+ on GP IIb-IIIa interactions with integrilin: enhanced GPIIb-IIIa binding and inhibition of platelet aggregation by reductions in the concentration of ionized calcium in plasma anticoagulated with citrate. Circulation 1997;96:1488–1494.

    PubMed  CAS  Google Scholar 

  32. Storey R, Wilcox R, Heptinstall S. Differential effects of glycoprotein IIb/IIIa antagonists on platelet microaggregate and macroaggregate formation and effect of anticoagulant on antagonist potency. Circulation 1998;98:1616–1621.

    PubMed  CAS  Google Scholar 

  33. Mascelli M, Worley S, Veriabo N, et al. Rapid assessment of platelet function with a modified whole-blood aggregometer in percutaneous transluminal coronary angioplasty patients receiving anti-GP IIb/IIIa therapy. Circulation 1997;96:3860–3866.

    PubMed  CAS  Google Scholar 

  34. Podczasy J, Lee J, Vucenik I. Evaluation of whole-blood lumiaggregation. Clin Appl Thromb Hemost 1997;3:190–195.

    Google Scholar 

  35. Storey R, May J, Wilcox R, Heptinstall S. A whole blood assay of inhibition of platelet aggregation by glycoprotein IIb/IIIa antagonists: comparison with other aggregation methodologies. Thromb Haemost 1999;82:1307–1311.

    PubMed  CAS  Google Scholar 

  36. Carville D, Schleckser P, Guyer K, Corsello M, Walsh M. Whole blood platelet function assay on the ICHOR point-of-care hematology analyzer. J Extra Corporal Technol 1998;30:171–177.

    CAS  Google Scholar 

  37. White MM, Krishnan R, Kueter TJ, Jacoski MV, Jennings LK. The Use of the Point of Care Helena ICHOR/Plateletworks(R) and the Accumetrics Ultergra(R) RPFA for Assessment of Platelet Function with GPIIb-IIIa Antagonists. J Thromb Thrombolysis 2005;18:163–169.

    Google Scholar 

  38. Ostrowsky J. Foes J, Warchol M, Tsarovsky G, Blay J. Plateletworks platelet function test compared to the thromboelastograph for prediction of postoperative outcomes. J Extra Corpor Technol 2004;36:149–152.

    PubMed  Google Scholar 

  39. Ray MJ, Walters DL, Bett N, Cameron J, Wood P, Aroney C. Point-of-care testing shows clinically relevant variation in the degree of inhibition of platelets by standard-dose abciximab therapy during percutaneous coronary intervention. Catheter Cardiovasc Interv 2004;62:150–154.

    PubMed  Google Scholar 

  40. Lennon MJ, Gibbs NM, Weightman WM, McGuire D, Michalopoulos N. A comparison of Plateletworks and platelet aggregometry for the assessment of aspirin-related platelet dysfunction in cardiac surgical patients. J Cardiothorac Vasc Anesth 2004;18:136–140.

    PubMed  CAS  Google Scholar 

  41. Steinhubl S, Keriakes D. Ultegra rapid platelet function analyzer. In: Michelson A, ed. Platelets: Academic Press, 2002:317–322.

    Google Scholar 

  42. Smith J, Steinhubl S, Lincoff A, et al. Rapid platelet-function assay an automated and quantitative cartridge-based method. Circulation 1999;99:620–625.

    PubMed  CAS  Google Scholar 

  43. Putter M, Grotemeyer K, Wurthwein G, Araghi-Niknam M, Watson R, Hosseini SPR. Inhibition of smoking-induced platelet aggregation by aspirin and pycnogenol. Thromb Res 1999;95:155–161.

    PubMed  CAS  Google Scholar 

  44. Fusegawa Y, Goto S, Handa S, Kawada T, Ando Y. Platelet spontaneous aggregation in platelet-rich plasma is increased in habitual smokers. Thromb Res 1999;93:271–278.

    PubMed  CAS  Google Scholar 

  45. Pernerstorfer T, Stohlawetz P, Stummvoll G, et al. Low-dose aspirin does not lower in vivo platelet activation in healthy smokers. Br J Haematol 1998;102:1229–1231.

    PubMed  CAS  Google Scholar 

  46. Durand P, Prost M, Blache D. Folic acid deficiency enhances oral contraceptive-induced platelet hyperactivity. Arterioscler Thromb Vasc Biol 1997;17:1939–1946.

    PubMed  CAS  Google Scholar 

  47. Mezzano D, Kosiel K, Martinez C, et al. Cardiovascular risk factors in vegetarians. Normalization of hyperhomocysteinemia with vitamin B(12) and reduction of platelet aggregation with n-3 fatty acids. Thromb Res 2000;100:153–160.

    PubMed  CAS  Google Scholar 

  48. Cipollone F, Ciabattoni G, Patrignani P, et al. Oxidant stress and aspirin-insensitive thromboxane biosynthesis in severe unstable angina. Circulation 2000;102:1007–1013.

    PubMed  CAS  Google Scholar 

  49. Wilkinson I, Megson I, MacCallum H, Sogo N, Cockcroft J, Webb D. Oral vitamin C reduces arterial stiffness and platelet aggregation in humans. J Cardiovasc Pharmacol 1999;34:690–693.

    PubMed  CAS  Google Scholar 

  50. Pignatelli P, Pulcinelli F, Lenti L, Gazzaniga P, Violi F. Vitamin E inhibits collagen-induced platelet activation by blunting hydrogen peroxide. Arterioscler Thromb Vasc Biol 1999;19:2542–2547.

    PubMed  CAS  Google Scholar 

  51. Kabakus N, Yilmaz B, Caliskan U. Investigation of platelet aggregation by impedance and optic methods in children with iron deficiency anaemia. Haematologia (Budap) 2000;30:107–115.

    CAS  Google Scholar 

  52. Kurekci A, Atay A, Sarici S, Zeybek C, Koseoglu V, Ozcan O. Effect of iron therapy on the whole blood platelet aggregation in infants with iron deficiency anemia. Thromb Res 2000;97:281–285.

    PubMed  CAS  Google Scholar 

  53. Nguyen A, Packham M, Rand M. Effects of ethanol on platelet responses associated with adhesion to collagen. Thromb Res 1999;95:303–314.

    PubMed  CAS  Google Scholar 

  54. Zhang Q, Das K, Siddiqui S, Myers A. Effects of acute, moderate ethanol consumption on human platelet aggregation in platelet-rich plasma and whole blood. Alcohol Clin Exp Res 2000;24:528–534.

    PubMed  CAS  Google Scholar 

  55. Ali M, Bordia T, Mustafa T. Effect of raw versus boiled aqueous extract of garlic and onion on platelet aggregation. Prostaglandins Leukotriene Med 1999;60:43–47.

    CAS  Google Scholar 

  56. Steiner M, Li W. Aged garlic extract, a modulator of cardiovascular risk factors: a dose-finding study on the effects of AGE on platelet functions. J Nutr 2001;131:980S–984S.

    PubMed  CAS  Google Scholar 

  57. Mori T, Beilin L, Burke V, Morris J, Ritchie J. Interactions between dietary fat, fish, and fish oils and their effects on platelet function in men at risk of cardiovascular disease. Arterioscler Thromb Vasc Biol 1997;17:279–286.

    PubMed  CAS  Google Scholar 

  58. Varani K, Portaluppi F, Gessi S, et al. Dose and time effects of caffeine intake on human platelet adenosine A(2A) receptors: functional and biochemical aspects. Circulation 2000;102:285–289.

    PubMed  CAS  Google Scholar 

  59. Li N, Wallen N, Hjemdahl P. Evidence for prothrombotic effects of exercise and limited protection by aspirin. Circulation 1999;100:1374–1379.

    PubMed  CAS  Google Scholar 

  60. Hurlen M, Seljeflot I, Arnesen H. Increased platelet aggregability during exercise in patients with previous myocardial infarction. Lack of inhibition by aspirin. Thromb Res 2000;99:487–494.

    PubMed  CAS  Google Scholar 

  61. Sanguigni V, Pignatelli P, Lenti L, et al. Short-term treatment with atorvastatin reduces platelet CD40 ligand and thombin generation in hypercholesterolemic patients. Circulation 2005;111:412–419.

    PubMed  CAS  Google Scholar 

  62. Musselman D, Tomer A, Manatunga A, et al. Exaggerated platelet reactivity in major depression. Am J Psychiatry 1996;153:1313–1317.

    PubMed  CAS  Google Scholar 

  63. Faraday N, Goldschmidt-Clermont P, Bray P. Gender differences in platelet GPIIb-IIIa activation. Thromb Haemost 1997;77:748–754.

    PubMed  CAS  Google Scholar 

  64. Bray P. Platelet glycoprotein polymorphisms as risk factors for thrombosis. Curr Opin Hematol 2000;7:284–289.

    PubMed  CAS  Google Scholar 

  65. Feng D, Lindpaintner K, Larson M, et al. Increased platelet aggregability associated with platelet GPIIIa P1A2 polymorphism: the Framingham Offspring Study. Arterioscler Thromb Vasc Biol 1999;19:1142–1147.

    PubMed  CAS  Google Scholar 

  66. Michelson A, Furman M, Goldschmidt-Clermont P, et al. Platelet GP IIIa P1(A) polymorphisms display different sensitivities to agonists. Circulation 2000;101:1013–1018.

    PubMed  CAS  Google Scholar 

  67. Kritzik M, Savage B, Nugent D, Santoso S, Ruggeri Z, Kunicki T. Nucleotide polymorphisms in the alpha2 gene define multiple alleles that are associated with differences in platelet alpha2 beta1 density. Blood 1998;92:2382–2388.

    PubMed  CAS  Google Scholar 

  68. Afshar-Kharghan V, Li C, Khoshnevis-Asl M, Lopez J. Kozak sequence polymorphism of the glycoprotein (GP) Ibalpha gene is a major determinant of the plasma membrane levels of the platelet GPIb-IX-V complex. Blood 1999;94:186–191.

    PubMed  CAS  Google Scholar 

  69. Kerrigan SW, Douglas I, Wray A, et al. A role for glycoprotein Ib in Streptococcus sanguis-induced platelet aggregation. Blood 2002;100:509–516.

    PubMed  CAS  Google Scholar 

  70. Moran N, Morateck PA, Deering A, et al. Surface expression of glycoprotein Ibalpha is dependent on glycoprotein Ibbeta: evidence from a novel mutation causing Bernard-Soulier syndrome. Blood 2000;96:532–539.

    PubMed  CAS  Google Scholar 

  71. Lind S. The bleeding time. In: Michelson A, ed. Platelets: Academic Press, San Diego, 2002;pp. 283–287.

    Google Scholar 

  72. Sramek R, Sramek A, Koster T, Briet E, Rosendaal F. A randomized and blinded comparison of three bleeding time techniques: the Ivy method, and the Simplate II method in two directions. Thromb Haemost 1992;67:514–518.

    PubMed  CAS  Google Scholar 

  73. Bernardi M, Califf R, Kleiman N, Ellis S, Topol E. Lack of usefulness of prolonged bleeding times in predicting hemorrhagic events in patients receiving the 7E3 glycoprotein IIb/IIIa platelet antibody. The TAMI Study Group. Am J Cardiol 1993;72:1121–1125.

    PubMed  CAS  Google Scholar 

  74. De Caterina R, Lanza M, Manca G, Strata G, Maffei S, Salvatore L. Bleeding time and bleeding: an analysis of the relationship of the bleeding time test with parameters of surgical bleeding. Blood 1994;84:3363–3370.

    PubMed  Google Scholar 

  75. Rendu F. The platelet release reaction: granules’ constituents, secretion and functions. Platelets 2001;12:261–273.

    PubMed  CAS  Google Scholar 

  76. Pereira J, Soto M, Palomo I, et al. Platelet aging in vivo is associated with activation of apoptotic pathways: studies in a model of suppressed thrombopoiesis in dogs. Thromb Haemost 2002;87:905–909.

    PubMed  CAS  Google Scholar 

  77. Trotter P, Orchard M, Walker J. Thrombin stimulates the intracellular relocation of annexin V in human platelets. Biochim Biophys Acta 1994;1222:135–140.

    PubMed  CAS  Google Scholar 

  78. Hemker H, van Rijn J, Rosing J, van Dieijen G, Bevers E, Zwaal R. Platelet membrane involvement in blood coagulation. Blood Cells 1983;9:303–317.

    PubMed  CAS  Google Scholar 

  79. Grau AJ, Reiners S, Lichy C, Buggle F, Ruf A, Jilma B. Platelet function under aspirin, clopidogrel, and both after ischemic stroke: a case-crossover study—synergistic antiplatelet effects of clopidogrel and aspirin detected with the PFA-100 in stroke patients. Stroke 2003;34:849–854.

    PubMed  CAS  Google Scholar 

  80. Holthe MR, Staff AC, Berge LN, Lyberg T. Different levels of platelet activation in preeclamptic, normotensive pregnant, and nonpregnant women. Am J Obstet Gynecol 2004;190:1128–1134.

    PubMed  CAS  Google Scholar 

  81. Obergfell A, Judd BA, del Pozo MA, et al. The molecular adapter SLP-76 relays signals from platelet integrin αIIbβ3 to the actin cytoskeleton. J Biol Chem 2001;276:5916–5923.

    PubMed  CAS  Google Scholar 

  82. Gende O. Capacitative calcium influx and intracellular pH cross-talk in human platelets. Platelets 2003;14:9–14.

    PubMed  CAS  Google Scholar 

  83. Drouin A, Favier R, Masse J-M, et al. Newly recognized cellular abnormalities in the gray platelet syndrome. Blood 2001;98:1382–1391.

    PubMed  CAS  Google Scholar 

  84. So C, Wong K. May-Hegglin anomaly. Br J Haematol 2003;120:373.

    PubMed  Google Scholar 

  85. White J, Mattson J, Nichols W, Luban N, Greinacher A. A variant of the Sebastian platelet syndrome with unique neutrophil inclusions. Platelets 2002;13:121–127.

    PubMed  CAS  Google Scholar 

  86. Shankaran H, Alexandridis P, Neelamegham S. Aspects of hydrodynamic shear regulating shear-induced platelet activation and self-association of von Willebrand factor in suspension. Blood 2003;101:2637–2645.

    PubMed  CAS  Google Scholar 

  87. Goto S, Tamura N, Eto K, Ikeda Y, Handa S. Functional significance of adenosine 5′-diphosphate receptor (P2Y(12)) in platelet activation initiated by binding of von Willebrand factor to platelet GP Ibα induced by conditions of high shear rate. Circulation 2002;105:2531–2536.

    PubMed  CAS  Google Scholar 

  88. Ikeda M, Iwamoto S, Imamura H, Furukawa H, Kawasaki T. Increased platelet aggregation and production of platelet-derived microparticles after surgery for upper gastrointestinal malignancy. J. Surg Res 2003;115:174–183.

    PubMed  CAS  Google Scholar 

  89. Eto K, Ochiai M. Isshiki T, et al. Platelet aggregability under shear is enhanced in patients with unstable angina pectoris who developed acute myocardial infarction. Jpn Circ J 2001;65:279–282.

    PubMed  CAS  Google Scholar 

  90. Sakakibara M, Goto S, Eto K, et al. Application of ex vivo flow chamber system for assessment of stent thrombosis. Arterioscler Thromb Vasc Biol 2002;22:1360–1364.

    PubMed  CAS  Google Scholar 

  91. Kundu S, Heilmann E, Sio R, Garcia C, Ostegaard R. Characterization of an in vitro platelet function analyzer, PFA-100™. Clin App Thromb/Hemost 1996;2:241–249.

    Google Scholar 

  92. Francis J. Platelet function analyzer (PFA)-100. In: Michelson A, ed. Platelets, Academic Press, San Diego, 2002; pp. 325–332.

    Google Scholar 

  93. Quinn M, Fitzgerald D. Ticlopidine and Clopidogrel. Circulation 1999;100:1667–1672.

    PubMed  CAS  Google Scholar 

  94. Hankey GJ, Eikelboom JW. Aspirin resistance. BMJ 2004;328:477–479.

    PubMed  Google Scholar 

  95. Campbell CL, Steinhubl SR. Variability in response to aspirin: do we understand the clinical relevance? J Throm Haemost 2005;3:665–669.

    CAS  Google Scholar 

  96. Eikelboom JW, Hirsh J, Weitz JI, et al. Aspirin-resistant thromboxane biosynthesis and the risk of myocardial infarction, stroke, or cardiovascular death in patients at high risk for cardiovascular events. Circulation 2002;105:1650–1655.

    PubMed  CAS  Google Scholar 

  97. Marshall P, Williams A, Dixon R, et al. A comparison of the effects of aspirin on bleeding time measured using the Simplate method and closure time measured using the PFA-100, in healthy volunteers. Br J Clin Pharmacol 1997;44:151–155.

    PubMed  CAS  Google Scholar 

  98. Homoncik M, Jilma B, Hergovich N, Stohlawetz P, Panzer S, Speiser W. Monitoring of aspirin (ASA) pharmacodynamics with the platelet function analyzer PFA-100. Thromb Haemost 2000;83:316–321.

    PubMed  CAS  Google Scholar 

  99. Sambola A, Heras M, Escolar G, et al. The PFA-100 detects sub-optimal antiplatelet responses in patients on aspirin. Platelets 2004;15:439–446.

    PubMed  CAS  Google Scholar 

  100. Malinin A, Spergling M, Muhlestein B, Steinhubl S, Serebruany V. Assessing aspirin responsiveness in subjects with multiple risk factors for vascular disease with a rapid platelet function analyzer. Blood Coagul Fibrinolysis 2004;15:295–301.

    PubMed  CAS  Google Scholar 

  101. Harrison P, Segal H, Blasbery, et al. Screening for aspirin responsiveness after transient ischemic attack and stroke. Comparison of 2 point-of-care platelet function tests with optical aggregometry. Stroke 2005, in press.

    Google Scholar 

  102. Ciabattoni G, Maclouf J, Catella F, FitzGerald G, Patrono C. Radioimmunoassay of 11-dehydrothromboxane B2 in human plasma and urine. Biochimica Biophysic Acta 1987;918:293–297.

    CAS  Google Scholar 

  103. Feldman M, Cryer B. Aspirin absorption rates and platelet inhibition times with 325-mg buffered aspirin tablets (chewed or swallowed intact) and with buffered aspirin solution. Am J Cardiol 1999;84:404–409.

    PubMed  CAS  Google Scholar 

  104. Brown N, May J, Wilcox R, Allan L, Wilson A, Kiff P, Heptinstall S. Comparison of antiplatelet activity of microencapsulated aspirin 162.5 Mg (Caspac XL), with enteric coated aspirin 75 mg and 150 mg in patients with atherosclerosis. Br J Clin Pharmacol 1999;48:57–62.

    PubMed  CAS  Google Scholar 

  105. Belton O, Byrne D, Kearney D, Leahy A, Fitzgerald D. Cyclooxygenase-1 and-2-dependent prostacyclin formation in patients with atherosclerosis. Circulation 2000;102:840–845.

    PubMed  CAS  Google Scholar 

  106. Bruno A, McConnell JP, Cohen SN, et al. Serial urinary 11-dehydrothromboxane B2, aspirin dose, and vascular events in blacks after recent cerebral infarction. Stroke 2004;35:727–730.

    PubMed  CAS  Google Scholar 

  107. Aleil B, Ravanat C, Cazenave JP, et al. Flow cytometric analysis of intraplatelet VASP phosphorylation for the detection of clopidogrel resistance in patients with ischemic cardiovascular diseases. J Thromb Haemost 2005;3:85–92.

    PubMed  CAS  Google Scholar 

  108. Geiger J, Teichmann L, Grossmann R, et al. Monitoring of clopidogrel action: comparison of methods. Clin Chem 2005, in press.

    Google Scholar 

  109. Quinn M, Cox D, Foley J, Fitzgerald D. Glycoprotein IIb/IIIa receptor number and occupancy during chronic administration of an oral antagonist. J Pharmacol Exp Ther 2000;295:670–676.

    PubMed  CAS  Google Scholar 

  110. Theroux P, Gosselin G, Nasmith J, et al. The Accumetrics Rapid Platelet Function Analyzer (RPFA®) to monitor platelet aggregation during oral administration of a GPIIb/IIIa antagonist. J Am Coll Cardiol 1999;33:330A.

    Google Scholar 

  111. Kereiakes D, Mueller M, Howard W, et al. Efficacy of abciximab induced platelet blockade using a rapid point of care assay. J Thromb Thrombol 1999;7:265–275.

    CAS  Google Scholar 

  112. Steinhubl S, Kottke-Marchant K, Molitterno D, et al. Attainment and maintenance of platelet inhibition through standard dosing of abciximab in diabetic and non-diabetic patients undergoing percutaneous coronary intervention. Circulation 1999;100:1977–1982.

    PubMed  CAS  Google Scholar 

  113. Steinhubl SR, Talley JD, Braden GA, Tcheng JE, Casterella PJ, Moliterno DJ, Navetta FI, Berger PB, Popma JJ, Dangas G, Gallo R, Sane DC, Saucedo JF, Jia G, Lincoff AM, Theroux P, Holmes DR, Teirstein PS, Kereiakes DJ. Point-of-care measured platelet inhibition correlates with a reduced risk of an adverse cardiac event after percutaneous coronary intervention: results of the GOLD (AU-Assessing Ultegra) multicenter study. Circulation 2001;103:2372–2578.

    Google Scholar 

  114. Quinn M, Deering A, Stewart M, Cox D, Foley B, Fitzgerald D. Quantifying GPIIb/IIIa receptor binding using 2 monoclonal antibodies: discriminating abciximab and small molecular weight antagonists. Circulation 1999;99:2231–2238.

    PubMed  CAS  Google Scholar 

  115. Cox D, Smith R, Quinn M, Theroux P, Crean P, Fitzgerald D. Evidence of platelet activation during treatment with a GPIIb/IIIa antagonist in patients presenting with acute coronary syndromes. J Am Coll Cardiol 2000;36:1514–1519.

    PubMed  CAS  Google Scholar 

  116. Hezard N, Metz D, Nazeyrollas P, et al. Free and total platelet glycoprotein IIb/IIIa measurement in whole blood by quantitative flow cytometry during and after infusion of c7E3 Fab in patients undergoing PTCA. Thromb Haemost 1999;81:869–873.

    PubMed  CAS  Google Scholar 

  117. Ghiggeri G, Caridi G, Magrini U, et al. Genetics, clinical and pathological features of glomerulonephritis associated with mutations of nonmuscle myosin IIA (Fechtner syndrome). Am J Kidney Dis 2003;41:95–104.

    PubMed  CAS  Google Scholar 

  118. Deutsch S, Rideau A, Bochaton-Piallat M, et al. D1424N MYH9 mutation results in an unstable protein responsible for the phenotypes in May-Hegglin anomaly/Fechtner syndrome. Blood 2003;102:529–534.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Cox, D. (2005). Platelet Function Studies. In: Quinn, M., Fitzgerald, D. (eds) Platelet Function. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59259-917-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-917-2_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-244-5

  • Online ISBN: 978-1-59259-917-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics