Skip to main content

Gene Therapy and Cardiovascular Diseases

  • Chapter
Principles of Molecular Cardiology

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 889 Accesses

Abstract

Gene therapy is a promising new field in modern medicine and holds great potential for the treatment of cardiovascular diseases. This chapter will discuss the principles and methods of gene-based therapy and the use of gene transfer in research and in treatment of cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heistad DD. Gene transfer to blood vessels: a research tool and potential therapy. Am J Hypertens 2001;14:28S–32S.

    Article  PubMed  CAS  Google Scholar 

  2. Isner JM, Baumgartner I, Rauh G, et al. Treatment of throm-boangiitis obliterans (Buerger’s disease) by intramuscular gene transfer of vascular endothelial growth factor: preliminary clinical results. J Vase Surg 1998;28:964–973.

    Article  CAS  Google Scholar 

  3. Losordo DW, Vale PR, Symes JF, et al. Gene therapy for myocardial angiogenesis: Initial clinical results with direct myocardial injection of phVEGF (165) as sole therapy for myocardial ischemia. Circulation 1998;98:2800–2804.

    PubMed  CAS  Google Scholar 

  4. Chu Y, Faraci F, Heistad DD. Gene therapy of hypertensive vascular injury. Curr Hypertens Reports 2000;2:92–97.

    Article  CAS  Google Scholar 

  5. Phillips MI. Gene therapy for hypertension: the preclinical data. Hypertension 2001;38:543–548.

    Article  PubMed  CAS  Google Scholar 

  6. Mir L, Bureau M, Gehl J, et al. High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci USA 1999;96:4262–4267.

    Article  PubMed  CAS  Google Scholar 

  7. Liu D, Knapp JE. Hydrodynamics-based gene delivery. Curr Opin Mol Ther 2001;3:192–197.

    PubMed  CAS  Google Scholar 

  8. Zhang G, Budker V, Williams P, Subbotin V, Wolff JA. Efficient expression of naked DNA delivered intraarterially to limb muscles of nonhuman primates. Hum Gene Ther 2001;12:427–438.

    Article  PubMed  CAS  Google Scholar 

  9. Liu F, Nishikawa M, Clemens PR, Huang L. Transfer of full-length Dmd to the diaphragm muscle of Dmd (mdx/mdx) mice through systemic administration of plasmid DNA. Mol Ther 2001;4:45–51.

    Article  PubMed  CAS  Google Scholar 

  10. Mulligan R. The basic science of gene therapy. Science 1993;260:926–932.

    Article  PubMed  CAS  Google Scholar 

  11. Macdonald C, Walker S, Watts M, Ings S, Linch DC, Devereux S. Effect of changes in expression of the amphotropic retroviral receptor PiT-2 on transduction efficiency and viral titer: implications for gene therapy. Hum Gene Ther 2000;11:587–595.

    Article  PubMed  CAS  Google Scholar 

  12. Barrette S, Douglas J, Orlic D, et al. Superior transduction of mouse hematopoietic stem cells with 10A1 and VSV-G pseudo-typed retrovirus vectors. Mol Ther 2000;1:330–338.

    Article  PubMed  CAS  Google Scholar 

  13. Nabel EG, Plautz G, Boyce FM, Stanley JC, Nabel GJ. Recombinant gene expression in vivo within endothelial cells of the arterial wall. Science 1989;244:1342–1344.

    Article  PubMed  CAS  Google Scholar 

  14. Wilson JM, Birinyi LK, Salomon RN, Libby P, Callow AD, Mulligan RC. Implantation of vascular grafts lined with genetically engineered endothelial cells. Science 1989;244:1344–1346.

    Article  PubMed  CAS  Google Scholar 

  15. Naldini L. Lend viruses as gene transfer agents for delivery to non-dividing cells. Curr Opin Biotechnol 1998;9:457–463.

    Article  PubMed  CAS  Google Scholar 

  16. Kafri T, Van Praag H, Ouyang I, et al. A packaging cell line for lentiviral vectors. J Virol 1999;73:576–584.

    PubMed  CAS  Google Scholar 

  17. Gerard RD, Collen D. Adenovirus gene therapy for hypercholesterolemia, thrombosis and restenosis. Cardiovasc Res 1997;35:451–458.

    Article  PubMed  CAS  Google Scholar 

  18. Chu Y, Heistad DD. Gene transfer to blood vessels using adenoviral vectors. Methods Enzymol 2002;346:263–276.

    PubMed  CAS  Google Scholar 

  19. Roelvink PW, Lizonova A, Lee JG, et al. The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes A, C, D, E, and F. J Virol 1998;72:7909–7915.

    PubMed  CAS  Google Scholar 

  20. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993;73:309–319.

    Article  PubMed  CAS  Google Scholar 

  21. Hong SS, Karayan L, Yournier J, Curiel DT, Boulanger P. Adenovirus type 5 fiber knob binds to MHC class I alpha2 domain at the surface of human epithelial and B lymphoblastoid cells. EMRB J 1997;16:2294–2306.

    CAS  Google Scholar 

  22. Chu Y, Heistad DD, Cybulsky MI, Davidson BL. Vascular cell adhesion molecule-1 augments adenovirus-mediated gene transfer. Arterioscler Thromb Vase Biol 2001;21:238–242.

    CAS  Google Scholar 

  23. Heistad DD, and Faraci FM. Gene Therapy for Cerebral Vascular Disease. Stroke 1996;27:1688–1693.

    PubMed  CAS  Google Scholar 

  24. Belalcazar M, Chan L. Somatic gene therapy for dislipidemias. J Lab Clin Med 1999;134:194–214.

    Article  PubMed  CAS  Google Scholar 

  25. Flotte TR, Carter BJ. Adeno-associated virus vectors for gene therapy. Gene Ther 1995;2:357–362.

    PubMed  CAS  Google Scholar 

  26. Svensson EC, Marshall DJ, Woodard K, et al. Efficient and stable transduction of cardiomyocytes after intramyocardial injection or intracoronary perfusion with recombinant adenoassociated virus vectors. Circulation 1999;99:201–205.

    PubMed  CAS  Google Scholar 

  27. Duan D, Yue Y, Engelhardt JF. Expanding AAV packaging capacity with trans-splicing or overlapping vectors: a quantitative comparison. Mol Ther 2001;4:383–391.

    Article  PubMed  CAS  Google Scholar 

  28. Cao L, Liu Y, During MJ, Xiao W. High-titer, wild-type free recombinant adeno-associated virus vector production using intron-containing helper plasmids. J Virol 2000;74:11456–11463.

    Article  PubMed  CAS  Google Scholar 

  29. Spragg DD, Alford DR, Greferath R, et al. Immunotargeting of liposomes to activated vascular endothelial cells: A strategy for site-selective delivery in the cardiovascular system. Proc Natl Acad Sci USA 1997;94:8795–8800.

    Article  PubMed  CAS  Google Scholar 

  30. Kibbe MR, Murdock A, Wickham T, Lizonova A, Kovesdi I, Nie S, Shears L, Billiar TR, Tzeng E. Optimizing cardiovascular gene therapy: increased vascular gene transfer with modified adenoviral vectors. Arch Surg 2000;135:191–197.

    Article  PubMed  CAS  Google Scholar 

  31. Lee LY, Zhou X, Polce DR, et al. Exogenous control of cardiac gene therapy: Evidence of regulated myocardial transgene expression after adenovirus and adeno-associated virus transfer of expression cassettes containing corticosteroid response element promoters. JThorac Cardiovasc Surg 1999;118:26–35.

    Article  CAS  Google Scholar 

  32. Smith-Arica JR, Williams JC, Stone D, Smith J, Lowenstein PR, Castro MG. Switching on and off transgene expression within lactotrophic cells in the anterior pituitary gland in vivo. Endocrinology 2001;142:2521–2532.

    Article  PubMed  CAS  Google Scholar 

  33. Von der Leyen HE, Gibbons GH, Morishita R, et al. Gene therapy inhibiting neointimal vascular lesion: In vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci 1995;92:1137–1141.

    Article  PubMed  Google Scholar 

  34. Newman KD, Dunn PF, Owens JW, et al. Adenovirus-mediated gene transfer into normal rabbit arteries results in prolonged vascular cell activation, inflammation and neointima hyperplasia. J Clin Invest 1995;96:2955–2965.

    PubMed  CAS  Google Scholar 

  35. Morishige K, Shimokawa H, Eto Y, et al. Adenovirus-mediated transfer of dominant-negative Rho-kinase induces a regression of coronary atherosclerosis in pigs in vivo. Arterioscler Thomb Vase Biol 2001;21:548–554.

    CAS  Google Scholar 

  36. Morishige K, Shimokawa H, Yamawaki T, et al. Local adenovirus-mediated transfer of C-type natriuretic peptide suppresses vascular remodeling in porcine coronary arteries in vivo. J Am Coll Card 2000;35:1040–1047.

    Article  CAS  Google Scholar 

  37. Rios CD, Ooboshi H, Piegors DJ, Davidson BL, Heistad DD. Adenovirus-mediated gene transfer to normal and atherosclerotic vessels: A novel approach. Arterioscler Thromb Vase Biol 1995;15:2241–2245.

    CAS  Google Scholar 

  38. Lopez JJ, Edelman ER, Stamler A, et al. Angiogenic Potential of Perivascularly Delivered aFGF in a Porcine Model of Chronic Myocardial Ischemia. Am J Physiol 1998;274:H930–H936.

    PubMed  CAS  Google Scholar 

  39. Lamping KG, Rios CD, Chun JA, Ooboshi H, Davidson BL, Heistad DD. Intrapericardial Administration of Adenovirus for Gene Transfer. Am J Physiol 1997;41:H310–H317.

    Google Scholar 

  40. March KL, Woody M, Mehdi K, Zipes DP, Brantly M, Trapnell BC. Efficient in vivo catheter-based pericardial gene transfer mediated by adenoviral vectors. Clin Cardiol 1999;22:I23–I29.

    Article  PubMed  CAS  Google Scholar 

  41. Ooboshi H, Welsh MJ, Rios CD, Davidson BL, Heistad DD. Adenovirus-mediated gene transfer to cerebral blood vessels in vivo. Circ Res 1995;77:7–13.

    PubMed  CAS  Google Scholar 

  42. Chen AFY, Jiang S, Crotty TB, et al. Effects of in vivo adven-titial expression of recombinant endothelial nitric oxide synthase gene in cerebral arteries. Proc Natl Acad Sci USA 1997;94:12568–12573.

    Article  PubMed  CAS  Google Scholar 

  43. Ooboshi H, Chu Y, Rios CD, Faraci FM, Davidson BL, Heistad DD. Altered vascular function following adenovirus-mediated overexpression of endothelial nitric oxide synthase. Am J Physiol 1997;42:H265–H270.

    Google Scholar 

  44. Tsuitsui M, Chen AF, O’Brien T, Crotty TB, Katusic Z. Adventitial expression of recombinant eNOS gene restores NO production in arteries without endothelium. Arterioscler Thromb Vase Biol 1998;18:1231–1241.

    Google Scholar 

  45. Toyoda K, Faraci FM, Watanabe J, et al. Gene transfer of CGRP prevents vasoconstriction after subarachnoid hemorrhage. Circ Res 2000;87:818–824.

    PubMed  CAS  Google Scholar 

  46. Herz J, Gerard RD. Adenovirus-mediated transfer of low density lipoprotein receptor gene acutely accelerates cholesterol clearance in normal mice. Proc Natl Acad Sci USA 1993;90:2812–2816.

    Article  PubMed  CAS  Google Scholar 

  47. Kozarsky KF, McKinley DR, Austin LL, Raper SE, Stratford-Perricaudet LD, Wilson JM. In vivo correction of low density lipoprotein receptor deficiency in the Watanabe heritable hyper-lipidemic rabbit with recombinant adenovirus. J Biol Chem 1994;269:13695–13702.

    PubMed  CAS  Google Scholar 

  48. Spady DK, Cuthbert JA, Willard MN, Meidell RS. Adenovirus-mediated transfer of a gene encoding cholesterol 7α-hydroxylase into hamsters increases hepatic enzyme activity and reduces plasma total and low density lipoprotein cholesterol. J Clin Invest 1995;96:700–709.

    PubMed  CAS  Google Scholar 

  49. Jaffe HA, Danel C, Longenecker G, et al. Adenovirus-mediated in vivo gene transfer and expression in normal rat liver. Nat Genet 1992;1:372–378.

    Article  PubMed  CAS  Google Scholar 

  50. Bergelson JM, Cunningham JA, Droguett G, et al. Isolation of a common receptor for coxsackie B virues and adenoviruses 2 and 5. Science 1997;275:1320–1323.

    Article  PubMed  CAS  Google Scholar 

  51. Ooboshi H, Rios CD, Chu Y, et al. Augmented Adenovirus-Mediated Gene Transfer to Atherosclerotic Vessels. Arterioscler Thromb Vase Biol 1997;17:1786–1792.

    CAS  Google Scholar 

  52. Rekhter MD, Simari RD, Work CW, Nabel GJ, Nabel EG, Gordon D. Gene transfer into normal and atherosclerotic human blood vessels. Circ Res 1998;82:1243–1252.

    PubMed  CAS  Google Scholar 

  53. Reynolds PN, Zinn KR, Gavrilyuk VD, et al. A targetable, injectable adenoviral vector for selective gene delivery to pulmonary endothelium in vivo. Molec Ther 2000;2:562–578.

    Article  CAS  Google Scholar 

  54. Guo ZS, Wang LH, Eisensmith RC, Woo SL. Evaluation of promoter strength for hepatic gene expression in vivo following adenovirus-mediated gene transfer. Gene Ther 1996;3:802–810.

    PubMed  CAS  Google Scholar 

  55. Nicklin SA, Reynolds PN, Brosnan MJ, et al. Analysis of cell-specific promoters for viral gene therapy targeted at the vascular endothelium. Hypertension 2001;38:65–70.

    PubMed  CAS  Google Scholar 

  56. Ni W, Egashira K, Kitamoto S, et al. New anti-monocyte chemoattractant protein-1 gene therapy attenuates atherosclerosis in apolipoprotein E-knockout mice. Circulation 2001;103:2096–2101.

    PubMed  CAS  Google Scholar 

  57. Pradat PF, Kennel P, Maimi-Sadaoui S, et al. Continuous delivery of neurotrophin 3 by gene therapy has a neuroprotective effect in experimental models of diabetic and acrylamide neuropathies. Hum Gene Ther 2001;12:2237–2249.

    Article  PubMed  CAS  Google Scholar 

  58. Chang MW, Barr E, Seltzer J et al. Cytostatic gene therapy for vascular proliferative disorders with a constitutively active form of the retinoblastoma gene product. Science 1995;267:518–522.

    Article  PubMed  CAS  Google Scholar 

  59. Fang X, Weintraub NL, Rios CD, et al. Overexpression of human superoxide dismutase inhibits oxidation of low-density lipoprotein by endothelial cells. Circ Res 1998;82:1289–1297.

    PubMed  CAS  Google Scholar 

  60. Brown MR, Miller FJ Jr, Li WG, et al. Overexpression of human catalase inhibits proliferation and promotes apoptosis in vascular smooth muscle cells. Circ Res 1999;85:524–533.

    PubMed  CAS  Google Scholar 

  61. Rome JJ, Shayani V, Flugelman MY, et al. Anatomic barriers influence the distribution of in vivo gene transfer into the arterial wall: modeling with microscopic tracer particles and verification with recombinant adenoviral vector. Arterioscler Thromb 1994;14:148–161.

    PubMed  CAS  Google Scholar 

  62. Chen AFY, O’Brien T, Tsutsui M, et al. Expression and function of recombinant endothelial nitric oxide synthase gene in canine basilar artery. Circ Res 1997;80:327–335.

    PubMed  CAS  Google Scholar 

  63. Barr E, Carron J, Kalyuyeh AM, et al. Efficient catheter-mediated gene transfer into the heart using replication-defective adenovirus. Gene Ther 1994;1:51–58.

    PubMed  CAS  Google Scholar 

  64. Ooboshi H, Rios CD, Heistad DD. Novel methods for adenovirus-mediated gene transfer to blood vessels in vivo. Mol Cell Biochem 1997;172:37–46.

    Article  PubMed  CAS  Google Scholar 

  65. Christenson SD, Lake KD, Ooboshi H, et al. Adenovirus-mediated gene transfer in vivo to cerebral blood vessels and perivascular tissue in mice. Stroke 1998;29:1411–1416.

    PubMed  CAS  Google Scholar 

  66. Kirshenbaum LA. Adenovirus mediated-gene transfer into cardiomyocytes. Mol Cell Biochem 1997;172:13–21.

    Article  PubMed  CAS  Google Scholar 

  67. Hajar RJ, del Monte F, Matsui T, Rosenzweig A. Prospects for gene therapy for heart failure. Circ Res 2000;86:616–621.

    Google Scholar 

  68. Sakoda T, Kasahara N, Hamamori Y, Kedes L. A high-titer lentiviral production system mediates efficient transduction of differentiated cells including beating cardiac myocytes. J Mol CellCardiol 1999;31:2037–2047.

    Article  CAS  Google Scholar 

  69. Datwyler DA, Eppenberger HM, Roller D, Bailey JE, Magyar JP. Efficient gene delivery into adult cardiomyocytes by recombinant Sindbis virus. J Mol Med 1999;77:859–864.

    Article  PubMed  CAS  Google Scholar 

  70. Guzman RJ, Lemarchand P, Crystal RG, Epstein SE, Finkel T. Efficient gene transfer into myocardium by direct injection of adenovirus vectors. Circ Res 1993;73:1202–1207.

    PubMed  CAS  Google Scholar 

  71. French BA, Wojciech M, Geske RS, Bolli R. Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circulation 1994;90:2414–2424.

    PubMed  CAS  Google Scholar 

  72. Kypson, AP, Hendrickson, SC, Wilson K, et al. Adenovirus-mediated gene transfer of the β2-adrenergic receptor to donor hearts enhances cardiac function. Gene Ther 1999;6:1298–1304.

    Article  PubMed  CAS  Google Scholar 

  73. Donahue JK, Kikkawa K, Thomas AD, Marban E, Lawrence JH. Acceleration of widespread adenoviral gene transfer to intact rabbit hearts by coronary perfusion with low calcium and serotonin. Gene Ther 1998,5:630–634.

    Article  PubMed  CAS  Google Scholar 

  74. Logeart D, Hatem SN, Rucker-Martin C, et al. Highly efficient adenovirus-mediated gene transfer to cardiac myocytes after single-pass coronary delivery. Hum Gene Ther 2000;11:1015–1022.

    Article  PubMed  CAS  Google Scholar 

  75. Hajar RJ, Schmidt U, Matsui T, et al. Modulation of ventricular function through gene transfer in vivo. Proc Natl Acad Sci USA 1998;95:5251–5256.

    Article  Google Scholar 

  76. Shah AS, Lilly RE, Kypson AP, et al. Intracoronary adenovirus-mediated delivery and overexpression of the beta(2)-adrenergic receptor in the heart: prospects for molecular ventricular assistance. Circulation 2000;101:408–414.

    PubMed  CAS  Google Scholar 

  77. Aoki M, Morishita R, Muraishi A, Moriguchi A, Sugimoto T, Maeda K, Dzau VJ, Kaneda Y, Higaki J, Ogihara T. Efficient in vivo gene transfer into the heart in the rat myocardial infarction model using the HVJ (hemagglutinating virus of Japan)-liposome method. J Mol Cell Cardiol 1997,29:949–959.

    Article  PubMed  CAS  Google Scholar 

  78. Frames Y, Salmon A, Wang X, et al. Gene delivery to the myocardium by intrapericardial injection. Gene Ther 1999;6:683–688.

    Article  CAS  Google Scholar 

  79. Shohet RV, Chen S, Zhou YT, et al. Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium. Circulation 2000;101:2554–2556.

    PubMed  CAS  Google Scholar 

  80. Baumgartner I, Isner JM. Somatic gene therapy in the cardiovascular system. Annu Rev Physiol 2001;63:427–450.

    Article  PubMed  CAS  Google Scholar 

  81. Losordo DW, Pickering JG, Takeshita S, et al. Use of the rabbit ear artery to serially assess foreign protein secretion after site-specific arterial gene transfer in vivo. Evidence that anatomic identification of successful gene transfer may underestimate the potential magnitude of transgene expression. Circulation 1994;89:785–792.

    PubMed  CAS  Google Scholar 

  82. Takeshita S, Zheng LP, Brogi E, et al. Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest 1994;93:662–670.

    Article  PubMed  CAS  Google Scholar 

  83. Vincent KA, Shyu K-G, Luo Y, et al. Angiogenesis Is Induced in a Rabbit Model of Hindlimb Ischemia by Naked DNA Encoding an HIF-1/VP16 Hybrid Transcription Factor. Circulation 2000;102:2255–2261.

    PubMed  CAS  Google Scholar 

  84. Giordano FJ, Ping P, McKirnan MD, et al. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med 1996;2:534–539.

    Article  PubMed  CAS  Google Scholar 

  85. Mack CA, Patel SR, Schwarz EA, et al. Biologic bypass with the use of adenovirus-mediated gene transfer of the complementary deoxyribonucleic acid for vascular endothelial growth factor 121 improves myocardial perfusion and function in the ischemic porcine heart. J Thorac Cardiovasc Surg 1998;115:168–176.

    Article  PubMed  CAS  Google Scholar 

  86. Tio RA, Tkebuchava T, Scheuermann TH, et al. Intramyocardial gene therapy with naked DNA encoding vascular endothelial growth factor improves collateral flow to ischemic myocardium. Hum Gene Ther 1999; 10:2953–2960.

    Article  PubMed  CAS  Google Scholar 

  87. Aoki M, Morishita R, Taniyama Y, et al. Angiogenesis induced by hepatocyte growth factor in non-infarcted myocardium and infarcted myocardium: up-regulation of essential transcription factor for angiogenesis, ets. Gene Ther 2000;7:417–427.

    Article  PubMed  CAS  Google Scholar 

  88. Lee RJ, Springer ML, Blanco-Bose WE, Shaw R, Ursell PC, Blau HM. VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation 2000;102:898–901.

    PubMed  CAS  Google Scholar 

  89. Rosengart TK, Lee LY, Patel SR, et al. Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 1999;100:468–474.

    PubMed  CAS  Google Scholar 

  90. Baumgartner I, Pieczek A, Manor O, et al. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 1998;97:1114–1123.

    PubMed  CAS  Google Scholar 

  91. Nabel EG, Plautz G, Nabel GJ. Site-specific gene expression in vivo by direct gene transfer into the arterial wall. Science 1990;249:1285–1288.

    Article  PubMed  CAS  Google Scholar 

  92. Chang MW, Barr E, Lu MM, Barton K, Leiden JM. Adenovirus-mediated over-expression of the cyclin/cyclin-dependent kinase inhibitor, p21 inhibits vascular smooth muscle cell proliferation and neointima formation in the rat carotid artery model of balloon angioplasty. J Clin Invest 1995;96:2260–2268.

    PubMed  CAS  Google Scholar 

  93. Dollery CM, Humphries SE, McClelland A, Latchman DS, McEwan JR. Expression of tissue inhibitor of matrix metalloproteinases 1 by use of an adenoviral vector inhibits smooth muscle cell migration and reduces neointimal hyperplasia in the rat model of vascular balloon injury. Circulation 1999;99:3199–3205.

    PubMed  CAS  Google Scholar 

  94. Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 1989;83:1774–1777.

    PubMed  CAS  Google Scholar 

  95. Janssens S, Flaherty D, Nong Z, et al. Human endothelial nitric oxide synthase gene transfer inhibits vascular smooth muscle cell proliferation and neointima formation after balloon injury in rats. Circulation 1998;97:1274–1281.

    PubMed  CAS  Google Scholar 

  96. Chen L, Daum G, Forough R, Clowes M, Walter U, Clowes AW. Overexpression of human endothelial nitric oxide synthase in rat vascular smooth muscle cells and in balloon-injured carotid artery. Circ Res 1998;82:862–870.

    PubMed  CAS  Google Scholar 

  97. Khurana R, Martin JF, Zachary I. Gene therapy for cardiovascular disease: a case for cautious optimism. Hypertension 2001; 38:1210–1216.

    Article  PubMed  CAS  Google Scholar 

  98. Pollman MJ, Hall JL, Mann MJ, Zhang L, Gibbons GH. Inhibition of neointimal cell bcl-x expression induces apoptosis and regression of vascular disease. Nat Med 1998;4:222–227.

    Article  PubMed  CAS  Google Scholar 

  99. Gordon EM, Zhu NL, Forney Prescott M, Chen ZH, Anderson WF, Hall FL. Lesion-targeted injectable vectors for vascular restenosis. Hum Gene Ther 2001;12:1277–1287.

    Article  PubMed  CAS  Google Scholar 

  100. Hajjar RJ, del Monte F, Matsui T, Rosenzweig A. Prospects of gene therapy for heart failure. Circ Res 2000;86:616–621.

    PubMed  CAS  Google Scholar 

  101. Miyamoto MI, del Monte F, Schmidt U, et al. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci USA 2000;97:793–798.

    Article  PubMed  CAS  Google Scholar 

  102. White DC, Hata JA, Shah HS, Glower DD, Lefkowitz RJ, Koch WJ. Preservation of P-adrenergic receptor signaling delays the development of heart failure after myocardial infarction. Proc Natl Acad Sci USA 2000;97:5428–5433.

    Article  PubMed  CAS  Google Scholar 

  103. Shah AS, White DC, Emani S, et al. In vivo ventricular gene delivery of a (3-adrenergic receptor kinase inhibitor to the failing heart reverses cardiac dysfunction. Circulation 2001;103:1311–1316.

    Article  PubMed  CAS  Google Scholar 

  104. Li Q, Bolli R, Qui Li Q, et al. Gene therapy with extracellular superoxide dismutase protects conscious rabbits against myocardial infarction. Circulation 2001;103:1893–1898.

    PubMed  CAS  Google Scholar 

  105. Nakano A, Matsumori A, Kawamoto S, et al. Cytokine gene therapy for myocarditis by in vivo electroporation. Hum Gene Ther 2001;12:1287–1297.

    Article  Google Scholar 

  106. Iwata A, Sai S, Nitta Y, et al. Liposome-mediated gene transfection of endothelial nitric oxide synthase reduces endothelial activation and leukocyte infiltration in transplanted hearts. Circulation 2001;103:2753–2759.

    PubMed  CAS  Google Scholar 

  107. Davidson MJ, Jones JM, Emani SM, et al. Cardiac gene delivery with cardiopulmonary bypass. Circulation 2001;104:131–133.

    PubMed  CAS  Google Scholar 

  108. Wang C, Chao L, Chao J. Direct gene delivery of human tissue kallikrein reduces blood pressure in spontaneously hypertensive rats. J Clin Invest 1995;95:1710–1716.

    PubMed  CAS  Google Scholar 

  109. Phillips MI, Wielbo D, Gyurko R. Antisense inhibition f hypertension: A new strategy for renin-angiotensin candidate genes. Kidney Int 1994;46:1554–1556.

    Article  PubMed  CAS  Google Scholar 

  110. Kotovich MJ, Gelband CH, Reaves P, et al. Reversal of hypertension of angiotensin II type 1 receptor antisense gene therapy in the adult SHR. Am J Physiol 1999;277:H1260–H1264.

    Google Scholar 

  111. Raizada MK, Katovich MJ, Wang H, et al. Is antisense gene therapy a step in the right direction in the control of hypertension? Am J Physiol 1999;45:H423–H432.

    Google Scholar 

  112. Phillips MI. Is gene therapy for hypertension possible? Hypertension 1999;33:8–13.

    PubMed  CAS  Google Scholar 

  113. Phillips MI, Mohuczy-Dominiak D, Coffey M, et al. Prolonged reduction of high blood pressure with an in vivo, nonpathogenic, adeno-assocated viral vector delivery at AT1-R mRNA antisense. Hypertension 1997;29:374–380.

    PubMed  CAS  Google Scholar 

  114. Wang H, Katovich MJ, Gelband CH, et al. Sustained inhibition of angiotensin I-converting enzyme (ACE) expression and long-term antihypertensive action by virally mediated delivery of ACE antisense cDNA. Circ Res 1999;85:614–622.

    PubMed  CAS  Google Scholar 

  115. Landmesser U, Harrison DG. Oxidation stress and vascular damage in hypertension. Coron Artery Dis 2001;12:455–461.

    Article  PubMed  CAS  Google Scholar 

  116. Chu Y, Iida S, Lund DD, et al. Gene transfer of extracellular superoxide dismutase reduces arterial pressure in spontaneously hypertensive rats: role of heparin-binding domain. Circ Res 2003;92:461–468.

    Article  PubMed  CAS  Google Scholar 

  117. Champion HC, Bivalacqua TJ, D’Souza FM, et al. Gene transfer of endothelial nitric oxide synthase to the lung of the mouse in vivo: Effect on agonist-induced and flow-mediated vascular responses. Circ Res 1999;84:1422–1432.

    PubMed  CAS  Google Scholar 

  118. Champion HC, Bivalacqua TJ, Toyoda K, et al. In vivo gene transfer of prepro calcitonin gene-related peptide (CGRP) to the lung attenuates chronic hypoxia-induced pulmonary hypertension in the mouse. Circulation 2000;101:923–930.

    PubMed  CAS  Google Scholar 

  119. Ooboshi H, Ibayashi S, Takada J, Yao H, Kitazono T, Fujishima M. Adenovirus-mediated gene transfer to ischemic brain. Ischemic flow threshold for transgene expression. Stroke 2001;32:1043–1047.

    PubMed  CAS  Google Scholar 

  120. Betz AL, Yang GY, Davidson BL. Attenuation of stroke size in rats using an adenoviral vector to induce overexpression of interleukin-1 receptor antagonist in brain. J Cereb Blood Flow Metab 1995;15:547–551.

    PubMed  CAS  Google Scholar 

  121. Kitagawa H, Sasaki C, Sakai K, et al. Adenovirus-mediated gene transfer of glial cell line-derived neurotrophic factor prevents ischemic brain injury after transient middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 1999;19:1336–1344.

    Article  PubMed  CAS  Google Scholar 

  122. Tsukamoto K, Tangirala R, Chun SH, Pure E, Rader DJ. Rapid regression of atherosclerosis induced by liver-directed gene transfer of apoE in apoE-deficient mice. Arterioscler Thromb Vase Biol 1999;19:2162–2170.

    CAS  Google Scholar 

  123. Kim IH, Jozkowicz A, Piedra PA, Oka K, Chan L. Lifetime correction of genetic deficiency in mice with a single injection of helper-dependent adenoviral vector. Proc Natl Acad Sci USA 2001;98:13282–13287.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Chu, Y., Weintraub, N.L., Heistad, D.D. (2005). Gene Therapy and Cardiovascular Diseases. In: Runge, M.S., Patterson, C. (eds) Principles of Molecular Cardiology. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59259-878-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-878-6_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-201-8

  • Online ISBN: 978-1-59259-878-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics