Skip to main content

Part of the book series: Biotechnology for Fuels and Chemicals ((ABAB))

Abstract

Currently, the high market price of cellulases prohibits commercialization of the lignocellulosics-to-fuel ethanol process, which utilizes enzymes for saccharification of cellulose. For this reason research aimed at understanding and improving cellulase production is still a hot topic in cellulase research. Trichoderma reesei RUT C30 is known to be one of the best hyper producing cellulolytic fungi, which makes it an ideal test organism for research. New findings could be adopted for industrial strains in the hope of improving enzyme yields, which in turn may result in lower market price of cellulases, thus making fuel ethanol more cost competitive with fossil fuels. Being one of the factors affecting the growth and cellulase production of T. reesei, the pH of cultivation is of major interest. In the present work, numerous pH-controlling strategies were compared both in shake-flask cultures and in a fermentor. Application of various buffer systems in shake-flask experiments was also tested. Although application of buffers resulted in slightly lower cellulase activity than that obtained in non-buffered medium, β-g1ucosidase production was increased greatly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ryu, D. D. Y. and Mandels, M. (1980), Enzyme Microb. Technol. 2, 91–102.

    Article  CAS  Google Scholar 

  2. Kanson, A. L., Essam, S. A., and Zeinat, A. N. (1999), Polym. Degrad. Stabil. 63, 273–278.

    Article  Google Scholar 

  3. Mukhopadhyay, S. and Nandi, B. (1999), J. Sci. Ind. Res. 58, 107–111.

    CAS  Google Scholar 

  4. Wayman, M. and Chen, S. (1992), Enzyme Microb. Technol. 14, 825–831.

    Article  CAS  Google Scholar 

  5. Kadam, K. L. and Keutzer, W. J. (1995), Biotechnol. Lett. 17, 1111–1114.

    Article  CAS  Google Scholar 

  6. Tangnu, S. K., Blanch, H. W., and Wilke, C. R. (1981), Biotechnol. Bioeng. 23, 1837–1849.

    Article  CAS  Google Scholar 

  7. Hendy, N. A., Wilke, C. R., and Blanch, H. W. (1984), Enzyme Microb. Technol. 6, 73–77.

    Article  CAS  Google Scholar 

  8. Doppelbauer, R., Esterbauer, H., Steiner, W., Lafferty, R. M., and Steinmüller, H. (1987), Appl. Microbiol. Biotechnol. 26, 485–494.

    Article  CAS  Google Scholar 

  9. Mukhopadhyay, S. N. and Malik, R. K. (1980), Biotechnol. Bioeng. 22, 2237–2250.

    Article  CAS  Google Scholar 

  10. Mandels, M. and Weber, J. (1969), Adv. Chem. Ser. 95, 391–414.

    Article  CAS  Google Scholar 

  11. Sternberg, D. (1976), Biotechnol. Bioeng. Symp. 6(6), 35–53.

    PubMed  CAS  Google Scholar 

  12. Chahal, D. S., McGuire, S., Pikor, H., and Noble, G. (1982), Biomass 2(2), 127–137.

    Article  CAS  Google Scholar 

  13. Duff, S. J. B., Cooper, D. G., and Fuller, O. M. (1987), Enzyme Microb. Technol. 9, 47–51.

    Article  CAS  Google Scholar 

  14. Yu, X.-B., Hyun S. Y., and Yoon-Mo, K. (1998), J. Microbiol. Biotechnol. 8, 208–213.

    Google Scholar 

  15. Mandels, M., Andreotti, R., and Roche, C. (1976), Biotechnol. Bioeng. Symp. 6(6), 21–33.

    PubMed  CAS  Google Scholar 

  16. Berghem, L. E. E. and Petterson, L. G. (1976), Eur. J. Biochem. 46, 295–305.

    Article  Google Scholar 

  17. Andreotti, R. E., Mandels, M., and Roche, C. (1977), in Bioconversion of Cellulosic Substrates into Energy, Chemicals and Microbial Protein: Proceedings of Bioconversion Symposium, Ghose, T. K., ed., Indian Institute of Technology, Delhi, pp. 249–267.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Juhász, T., Szengyel, Z., Szijártó, N., Réczey, K. (2004). Effect of pH on Cellulase Production of Trichoderma reesei RUT C30. In: Finkelstein, M., McMillan, J.D., Davison, B.H., Evans, B. (eds) Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO. Biotechnology for Fuels and Chemicals. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-837-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-837-3_18

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9873-8

  • Online ISBN: 978-1-59259-837-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics