Skip to main content

Part of the book series: Biotechnology for Fuels and Chemicals ((ABAB))

Abstract

An economic process for the enzymatic hydrolysis of cellulose would allow utilization of cellulosic biomass for the production of easily fermentable low-cost sugars. New and more efficient fermentation processes are emerging to convert this biologic currency to a variety of commodity products with a special emphasis on fuel ethanol production. Since the cost of cellulase production currently accounts for a large fraction of the estimated total production costs of bioethanol, a significantly less expensive process for cellulase enzyme production is needed. It will most likely be desirable to obtain cellulase production on different carbon sources—including both polymeric carbohydrates and monosaccharides. The relation between enzyme production and growth profile of the microorganism is key for designing such processes. We conducted a careful characterization of growth and cellulase production by the soft-rot fungus Trichoderma reesei. Glucosegrown cultures of T. reesei Rut-C30 were subjected to pulse additions of Solkafloc (delignified pine pulp), and the response was monitored in terms of CO2 evolution and increased enzyme activity. There was an immediate and unexpectedly strong CO2 evolution at the point of Solka-floc addition. The time profiles of induction of cellulase activity, cellulose degradation, and CO2 evolution are analyzed and discussed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wyk, J. P. H. (1999), Biomass Bioenergy 16, 239–242.

    Article  Google Scholar 

  2. Kheshgi, H. S., Prince, R. C., and Marland, G. (2000), Annu. Rev. Energ. Environ. 25, 199–244.

    Article  Google Scholar 

  3. Sun, Y. and Cheng, J. (2002), Bioresour. Technol. 83, 1–11.

    Article  PubMed  CAS  Google Scholar 

  4. Bhat, M. K. (2000), Biotechnol. Adv. 18, 355–383.

    Article  PubMed  CAS  Google Scholar 

  5. Himmel, M. E., Ruth, M. F., and Wyman, C. E. (1999), Curr. Opin. Biotechnol. 10, 358–364.

    Article  PubMed  CAS  Google Scholar 

  6. Persson, I., Tjerneld, F., and Hahn-Hägerdal, B. (1991), Process Biochem. 26, 65–74.

    Article  CAS  Google Scholar 

  7. Beguin, P. and Aubert, J. P. (1994), FEMS Microbiol. Rev. 13, 25–28.

    Article  PubMed  CAS  Google Scholar 

  8. Tolan, J. S. and Foody, B. (1999), in Advances in Biochemical Engineering/Biotechnology, vol. 65, Scheper, T., ed., Springer-Verlag, Berlin, Germany, pp. 40–67.

    Google Scholar 

  9. Yu, X. B., Hyun, S. Y., and Yoon-Mo, K. (1998), J. Microbiol. Biotechnol. 8, 208–213.

    Google Scholar 

  10. Ilmén, M., Saloheimo, A., Onnela, M.-L., and Pentillä, M. E. (1997), Appl. Environ. Microbiol. 63, 1298–1306.

    PubMed  Google Scholar 

  11. Kubicek, C. P., Messner, R., Cruber, F., Mach, R. L., and Kubicek-Pranz, E. M. (1993), Enzyme Microb. Technol. 15, 90–99.

    Article  PubMed  CAS  Google Scholar 

  12. Sut, M. and Tomita, F. (2001), J. Biosci. Bioeng. 92, 305–311.

    Google Scholar 

  13. Mandels, M. and Weber, J. (1969), Adv. Chem. Ser. 95, 391–414.

    Article  CAS  Google Scholar 

  14. Bigelow, M. and Wyman, C. E. (2002), Appl. Biochem. Biotechnol. 98/100, 921–934.

    Article  PubMed  Google Scholar 

  15. Miller, G. (1959), Anal. Chem. 31, 426–28.

    Article  CAS  Google Scholar 

  16. Mandels, M., Andreotti, R., and Roche, C. (1976), Biotechnol. Bioeng. Symp. 6, 21–23.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kati Réczey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Szijártó, N., Szengyel, Z., Lidén, G., Réczey, K. (2004). Dynamics of Cellulase Production by Glucose Grown Cultures of Trichoderma reesei Rut-C30 as a Response to Addition of Cellulose. In: Finkelstein, M., McMillan, J.D., Davison, B.H., Evans, B. (eds) Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO. Biotechnology for Fuels and Chemicals. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-837-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-837-3_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9873-8

  • Online ISBN: 978-1-59259-837-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics