Skip to main content

Part of the book series: Contemporary Endocrinology ((COE,volume 21))

Abstract

Kinins are polypeptides that contain the sequence of the nonapeptide, bradykinin, in their structure. In mammals, the main kinins are bradykinin and lysine-bradykinin. They are generated by a group of enzymes known as kininogenases, which include plasma and tissue kallikrein Kininogenases release kinins from low- (LMWK) and high-molecularweight kininogen (HMWK), which are present in high concentrations in plasma. Kinins are rapidly hydrolyzed in various tissues and plasma by a group of enzymes known as kininases; the best known are angiotensin-converting enzyme (ACE) and neutral endopeptidase 24.11 (NEP). Kinins release various endothelial autacoids, particularly nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF), eicosanoids, and tissue plasminogen activator (tPA). These substances exert a cardioprotective effect by causing hemodynamic changes and/or by a direct effect on the heart. The heart and vascular tissue contain the components of the kallikrein-kinin system, and kinins are also present in the venous effluent of isolated hearts perfused with saline buffers. Myocardial ischemia increases local release of kinins, which is enhanced further by ACE inhibitors. Kinins are also found in vascular and cardiac tissue in higher concentrations than in plasma. In isolated cardiac arteries and microvessels, angiotensin stimulates the formation of cyclic guanosine 3’,5’-monophosphate (cGMP), and this effect is mediated by the release of kinins and NO. The beneficial cardiovascular effects of ACE inhibitors, which are well documented, have generally been attributed to blockade of the renin-angiotensin system (RAS); however, there is a significant amount of evidence suggesting that kinins also participate in the cardioprotective effects of ACE inhibitors, especially in myocardial infarction (MI) induced by ischemia and reperfusion, left ventricular remodeling after MI, and heart failure (HF). Recent evidence suggests that some of the effects of angiotensin (ANG) type 1 receptor (AT1) antagonists are caused by activation of type 2 receptors, which may act via release of kinins and NO. This chapter will address the role of kinins within the heart, with emphasis on their role in the reduction of MI by ischemic preconditioning and the cardioprotective effect of ACE inhibitors in hypertension, as well as during MI induced by ischemia-reperfusion, left ventricular remodeling after MI, and HF post-MI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nolly H, Scicli AG, Scicli G, Carretero OA. Characterization of a kininogenase from rat vascular tissue resembling tissue kallikrein. Circ Res 1985; 56: 816–821.

    Article  PubMed  CAS  Google Scholar 

  2. Nolly H, Scicli AG, Scicli G, Lama MC, Guercio AM, Carretero OA. Kininogenase from rat vascular tissue. Adv Exp Med Biol 1986; 198A: 11–17.

    Article  PubMed  Google Scholar 

  3. Nolly H, Carretero OA, Scicli G, Madeddu P, Scicli AG A kallikrein-like enzyme in blood vessels of one-kidney, one-clip hypertensive rats. Hypertension 1990; 16: 436–440.

    Article  PubMed  CAS  Google Scholar 

  4. Nolly HL, Saed G, Scicli G, Carretero OA, Scicli AG. The kallikrein-kinin system in cardiac tissue. Agents Actions Suppl 1992;38/III:62–72.

    Google Scholar 

  5. Nolly H, Carretero OA, Scicli AG. Kallikrein release by vascular tissue. Am J Physiol 1993; 265: H1209 — H1214.

    PubMed  CAS  Google Scholar 

  6. Nolly H, Carbini LA, Scicli G, Carretero OA, Scicli AG. A local kallikrein-kinin system is present in rat hearts. Hypertension 1994; 23: 919–923.

    Article  PubMed  CAS  Google Scholar 

  7. Campbell DJ, Kladis A, Duncan A-M. Bradykinin peptides in kidney, blood, and other tissues of the rat. Hypertension 1993; 21: 155–165.

    Article  PubMed  CAS  Google Scholar 

  8. Erdös EG. Angiotensin I converting enzyme and the changes in our concepts through the years. Lewis K. Dahl memorial lecture. Hypertension 1990; 16: 363–370.

    Article  Google Scholar 

  9. Ura N, Carretero OA, Erdös EG. Role of renal endopeptidase 24.11 in kinin metabolism in vitro and in vivo. Kidney Int 1987; 32: 507–513.

    Article  PubMed  CAS  Google Scholar 

  10. Kitamura S, Carbini LA, Carretero OA, Simmons WH, Scicli AG. Potentiation by aminopeptidase P of blood pressure response to bradykinin Br J Pharmacol 1995; 114: 6–7.

    CAS  Google Scholar 

  11. Regoli D. Pharmacology of bradykinin and related kinins. Adv Exp Med Biol 1983; 156: 569–584.

    PubMed  CAS  Google Scholar 

  12. Menke JG, Borkowski JA, Bierilo KK, MacNeil T, Derrick AW, Schneck KA, et al. Expression cloning of a human B1 bradykinin receptor. J Biol Chem 1994;269:21, 583–21, 586.

    Google Scholar 

  13. Borkowski JA, Ransom RW, Seabrook GR, Trumbauer M, Chen H, Hill RG, Strader CD, Hess JF. Targeted disruption of a B2 bradykinin receptor gene in mice eliminates bradykinin action in smooth muscle and neurons. J Biol Chem 1995;270:13, 706–13, 710.

    Google Scholar 

  14. Regoli D, Rhaleb N-E, Dion S, Drapeau G. New selective bradykinin receptor antagonists and bradykinin B2 receptor characterization. Trends Pharmacol Sci 1990; 11: 156–161.

    Article  PubMed  CAS  Google Scholar 

  15. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991; 43: 109–142.

    PubMed  CAS  Google Scholar 

  16. Vane JR, Änggärd EE, Botting RM. Regulatory functions of the vascular endothelium. N Engl J Med 1990; 323: 27–36.

    Article  PubMed  CAS  Google Scholar 

  17. Mombouli J-V, Illiano S, Nagao T, Scott-Burden T, Vanhoutte PM. Potentiation of endothelium-dependent relaxations to bradykinin by angiotensin I converting enzyme inhibitors in canine coronary artery involves both endothelium-derived relaxing and hyperpolarizing factors. Circ Res 1992; 71: 137–144.

    Article  PubMed  CAS  Google Scholar 

  18. Smith D, Gilbert M, Owen WG. Tissue plasminogen activator release in vivo in response to vasoactive agents. Blood 1985; 66: 835–839.

    PubMed  CAS  Google Scholar 

  19. Carretero OA, Scicli AG. The kallikrein-kinin system as a regulator of cardiovascular and renal function. In: Laragh JH, Brenner BM, eds. Hypertension: Physiology, Diagnosis, and Management. Raven, New York, 1995, pp. 983–999.

    Google Scholar 

  20. Miyata T, Taguchi T, Uehara M, Isami S, Kishikawa H, Kaneko K, Araki E, Shichiri M. Bradykinin potentiates insulin-stimulated glucose uptake and enhances insulin signal through the bradykinin B2 receptor in dog skeletal muscle and rat L6 myoblasts. Eur J Endocrinol 1998; 138: 344–352.

    Article  PubMed  CAS  Google Scholar 

  21. Rett K, Maerker E, Renn W, van Gilst W, Haering HU. Perfusion-independent effect of bradykinin and fosinoprilate on glucose transport in Langendorff rat hearts. Am J Cardiol 1997; 80: 143A - 147A.

    Article  PubMed  CAS  Google Scholar 

  22. Rett K, Wicklmayr M, Dietze GJ, Häring HU. Insulin-induced glucose transporter (GLUT1 and GLUT4) translocation in cardiac muscle tissue is mimicked by bradykinin. Diabetes 1996; 45 (Suppl 1): S66 - S69.

    PubMed  Google Scholar 

  23. Thomas J, Linssen M, van der Vusse GJ, Hirsch B, Rosen P, Kammermeier H, Fischer Y. Acute stimulation of glucose transport by histamine in cardiac microvascular endothelial cells. Biochim Biophys Acta 1995; 1268: 88–96.

    Article  PubMed  Google Scholar 

  24. Marin-Grez M, Cottone P, Carretero OA. Evidence for an involvement of kinins in regulation of sodium excretion. Am J Physiol 1972; 223: 794–796.

    PubMed  CAS  Google Scholar 

  25. Saitoh S, Scicli AG, Peterson E, Carretero OA. Effect of inhibiting renal kallikrein on prostaglandin E2, water, and sodium excretion. Hypertension 1995; 25: 1008–1013.

    Article  PubMed  CAS  Google Scholar 

  26. Brukman J, Murray RD, Churchill PC, Scicli AG, Carretero OA. Effect of urinary alkalinization on the intrarenal formation of kinins. Am J Physiol 1985; 249: F827 - F831.

    PubMed  CAS  Google Scholar 

  27. Margolius HS, Horwitz D, Geller RG, Alexander RW, Gill JR Jr, Pisano JJ, Keiser HR. Urinary kallikrein excretion in normal man. Relationships to sodium intake and sodium-retaining steroids. Circ Res 1974; 35: 812–818.

    Article  PubMed  CAS  Google Scholar 

  28. Keiser HR, Geller RG, Margolius HS, Pisano JJ. Urinary kallikrein in hypertensive animal models. Fed Proc 1976; 35: 199–202.

    PubMed  CAS  Google Scholar 

  29. Carretero OA, Polomski C, Hampton A, Scicli AG. Urinary kallikrein, plasma renin and aldosterone in New Zealand genetically hypertensive (GH) rats. Clin. Exp. Pharmacol. Physiol. 1976; 3 (Suppl): 55–59.

    CAS  Google Scholar 

  30. Williams RR, Hunt SC, Hasstedt SJ, Berry TD, Wu LL, Barlow GK, Stults BM, Kuida H. Definition of genetic factors in hypertension: a search for major genes, polygenes, and homogeneous subtypes. J Cardiovasc Pharmacol 1988; 12: S7 - S20.

    PubMed  Google Scholar 

  31. Berry TD, Hasstedt SJ, Hunt SC, Wu LL, Smith JB, Ash KO, Kuida H, Williams RR. A gene for high urinary kallikrein may protect against hypertension in Utah kindreds. Hypertension 1989; 13: 3–8.

    Article  PubMed  CAS  Google Scholar 

  32. Zinner SH, Margolius HS, Rosner B, Kass EH. Stability of blood pressure rank and urinary kallikrein concentration in childhood: an eight-year follow-up. Circulation 1978; 58: 908–915.

    Article  PubMed  CAS  Google Scholar 

  33. Pravenec M, Krén V, Kunes J, Scicli AG, Carretero OA, Simonet L, Kurtz TW. Cosegregation of blood pressure with kallikrein gene family polymorphism. Hypertension 1991; 17: 242–246.

    Article  PubMed  CAS  Google Scholar 

  34. Nakagawa M, Nasjletti A. Plasma kinin concentration in deoxycorticosterone-salt hypertension. Hypertension 1988; 11: 411–415.

    Article  PubMed  CAS  Google Scholar 

  35. Carbonell LF, Carretero OA, Madeddu P, Scicli AG. Effects of a kinin antagonist on mean blood pressure. Hypertension 1988;11(Suppl I):I-84-I-88.

    Google Scholar 

  36. Majima M, Mizogami S, Kuribayashi Y, Katori M, Oh-Ishi S. Hypertension induced by a nonpressor dose of angiotensin II in kininogen-deficient rats. Hypertension 1994; 24: 111–119.

    Article  PubMed  CAS  Google Scholar 

  37. Madeddu P, Parpaglia PP, Demontis MP, Varoni MV, Fattaccio MC, Tonolo G, Troffa C, Glorioso N. Bradykinin B2-receptor blockade facilitates deoxycorticosterone-salt hypertension. Hypertension 1993; 21: 980–984.

    Article  PubMed  CAS  Google Scholar 

  38. Alfie ME, Sigmon DH, Pomposiello SI, Carretero OA. Effect of high salt intake in mutant mice lacking bradykinin-B2 receptors. Hypertension 1997; 29: 483–487.

    Article  PubMed  CAS  Google Scholar 

  39. Emanueli C, Angioni GR, Anania V, Spissu A, Madeddu P. Blood pressure responses to acute or chronic captopril in mice with disruption of bradykinin B2-receptor gene. J Hypertens 1997; 15: 1701–1706.

    Article  PubMed  CAS  Google Scholar 

  40. Simpson EM, Linder CC, Sargent EE, Davisson MT, Mobraaten LE, Sharp JJ. Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nat Genet 1997; 16: 19–27.

    Article  PubMed  CAS  Google Scholar 

  41. Carretero OA, Amin VM, Ocholik T, Scicli AG, Koch J. Urinary kallikrein in rats bred for their susceptibility and resistance to the hypertensive effect of salt. A new radioimmunoassay for its direct determination. Circ Res 1978; 42: 727–731.

    CAS  Google Scholar 

  42. Madeddu P, Varoni MV, Demontis MP, Chao J, Simson JA, Glorioso N, Anania V. Kallikrein-kinin system and blood pressure sensitivity to salt. Hypertension 1997; 29: 471–477.

    Article  PubMed  CAS  Google Scholar 

  43. Kailasam MT, O’Connor DT, Parmer RJ. Hereditary intermediate phenotypes in African American hypertension. Ethn Health 1996; 1: 117–128.

    Article  PubMed  CAS  Google Scholar 

  44. Carretero OA, Miyazaki S, Scicli AG. Role of kinins in the acute antihypertensive effect of the converting enzyme inhibitor, captopril. Hypertension 1981; 3: 18–22.

    Article  PubMed  CAS  Google Scholar 

  45. Carretero OA, Scicli AG, Maitra SR. Role of kinins in the pharmacological effects of converting enzyme inhibitors. In: Horovitz ZP, ed. Angiotensin Converting Enzyme Inhibitors. Mechanisms of Action and Clinical Implications. Urban & Schwarzenberg, Baltimore, 1981, pp. 105–121.

    Google Scholar 

  46. ørstavik TB, Carretero OA, Johansen L, Scicli AG. Role of kallikrein in the hypotensive effect of captopril after sympathetic stimulation of the rat submandibular gland. Circ Res 1982; 51: 385–390.

    Article  PubMed  Google Scholar 

  47. Carbonell LF, Carretero OA, Stewart JM, Scicli AG. Effect of a kinin antagonist on the acute antihypertensive activity of enalaprilat in severe hypertension. Hypertension 1988; 11: 239–243.

    Article  PubMed  CAS  Google Scholar 

  48. Danckwardt L, Shimizu I, Bonner G, Rettig R, Unger T. Converting enzyme inhibition in kinindeficient Brown Norway rats. Hypertension 1990; 16: 429–435.

    Article  PubMed  CAS  Google Scholar 

  49. Rhaleb N-E, Yang X-P, Scicli AG, Carretero OA. Role of kinins and nitric oxide in the antihypertrophic effect of ramipril. Hypertension 1994; 23: 865–868.

    Article  PubMed  CAS  Google Scholar 

  50. Liu Y-H, Yang X-P, Sharov VG, Nass O, Sabbah HN, Peterson E, Carretero OA. Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure: role of kinins and angiotensin II type 2 receptors. J Clin Invest 1997; 99: 1926–1935.

    Article  PubMed  CAS  Google Scholar 

  51. Linz W, Schölkens BA. A specific B2-bradykinin receptor antagonist HOE 140 abolishes the antihypertrophic effect of ramipril. Br J Pharmacol 1992; 105: 771–772.

    Article  PubMed  CAS  Google Scholar 

  52. Carretero OA, Kuk P, Piwonska S, Houle JA, Marin-Grez M. Role of the renin-angiotensin system in the pathogenesis of severe hypertension in rats. Circ Res 1971; 29: 654–663.

    Article  PubMed  CAS  Google Scholar 

  53. Bao G, Gohlke P, Unger T. Role of bradykinin in chronic antihypertensive actions of ramipril in different hypertension models. J Cardiovasc Pharmacol 1992; 20 (Suppl 9): S96 - S99.

    Article  PubMed  CAS  Google Scholar 

  54. Dahlöf B, Pennert K, Hansson L. Reversal of left ventricular hypertrophy in hypertensive patients. A metaanalysis of 109 treatment studies. Am J Hypertens 1992; 5: 95–110.

    PubMed  Google Scholar 

  55. Weinberg EO, Schoen FJ, George D, Kagaya Y, Douglas PS, Litwin SE, et al. Angiotensin-converting enzyme inhibition prolongs survival and modifies the transition to heart failure in rats with pressure overload hypertrophy due to ascending aortic stenosis. Circulation 1994; 90: 1410–1422.

    Article  PubMed  CAS  Google Scholar 

  56. Weinberg EO, Lee MA, Weigner M, Lindpaintner K, Bishop SP, Benedict CR, et al. Angiotensin ATt receptor inhibition. Effects on hypertrophie remodeling and ACE expression in rats with pressure-overload hypertrophy due to ascending aortic stenosis. Circulation 1997; 95: 1592–1600.

    Article  PubMed  CAS  Google Scholar 

  57. Linz W, Henning R, Schölkens BA. Role of angiotensin II receptor antagonism and converting enzyme inhibition in the progression and regression of cardiac hypertrophy in rats. J Hypertens 1991; 9 (Suppl 6): S400 - S401.

    Article  CAS  Google Scholar 

  58. Gohlke P, Linz W, Schölkens BA, Kuwer I, Bartenbach S, Schnell A, Unger T. Angiotensin-converting enzyme inhibition improves cardiac function. Role of bradykinin. Hypertension 1994; 23: 411–418.

    Article  PubMed  CAS  Google Scholar 

  59. Hanap SB, O’Sullivan JB. Cardiac transplantation, perindopril, and left ventricular hypertrophy in spontaneously hypertensive rats. Hypertension 1996; 28: 622–626.

    Article  Google Scholar 

  60. Dietze G, Maerker E, Lodri C, Schifman R, Wicklmayr M, Geiger R, et al. Possible involvement of kinins in muscle energy metabolism. Adv Exp Med Biol 1984; 167: 63–71.

    Article  PubMed  CAS  Google Scholar 

  61. Tomiyama H, Kushiro T, Abeta H, Ishi T, Takahashi A, Furukawa L, et al. Kinins contribute to the improvement of insulin sensitivity during treatment with angiotensin converting enzyme inhibitor. Hypertension 1994; 23: 450–455.

    Article  PubMed  CAS  Google Scholar 

  62. Kohlmann O Jr, Neves F de A, Ginoza M, Tavares A, Cezaretti ML, Zanella MT, et al. Role of bradykinin in insulin sensitivity and blood pressure regulation during hyperinsulinemia Hypertension 1995; 25: 1003–1007.

    Google Scholar 

  63. Zhang X, Xie Y-W, Nasjletti A, Xu X, Wolin MS, Hintze TH. ACE inhibitors promote nitric oxide accumulation to modulate oxygen consumption. Circulation 1997; 95: 176–182.

    Article  PubMed  Google Scholar 

  64. Xie YW, Shen W, Zhao G, Xu X, Wolin MS, Hintze TH. Role of endothelium-derived nitric oxide in the modulation of canine myocardial mitochondrial respiration in vitro. Implications for the development of heart failure. Circ Res 1996; 79: 381–387.

    Article  PubMed  CAS  Google Scholar 

  65. Hashimoto K, Hirose M, Furukawa H, Kimura E. Changes in hemodynamics and bradykinin concentration in coronary sinus blood in experimental coronary occlusion. Jpn Heart J 1977; 18: 679–689.

    Article  PubMed  CAS  Google Scholar 

  66. Matsuki T, Shoji T, Yoshida S, Kudoh Y, Motoe M, Inoue M, et al. Sympathetically induced myocardial ischaemia causes the heart to release plasma kinin Cardiovasc Res 1987; 21: 428–432.

    CAS  Google Scholar 

  67. Baumgarten CR, Linz W, Kunkel G, Schölkens BA, Wiemer G. Ramiprilat increases bradykinin outflow from isolated hearts of rat. Br J Pharmacol 1993; 108: 293–295.

    Article  PubMed  CAS  Google Scholar 

  68. Linz W, Wiemer G, Schölkens BA. ACE inhibition induces NO-formation in cultured bovine endothelial cells and protects isolated ischemic rat hearts. J Mol Cell Cardiol 1992; 24: 909–919.

    Article  PubMed  CAS  Google Scholar 

  69. Linz W, Martorana PA, Schölkens BA. Local inhibition of bradykinin degradation in ischemic hearts. J Cardiovasc Pharmacol 1990; 15 (Suppl 6): S99 - S109.

    PubMed  CAS  Google Scholar 

  70. Linz W, Schölkens BA, Kaiser J, Just M, Qi BY, Albus U, Petry P. Cardiac arrhythmias are ameliorated by local inhibition of angiotensin formation and bradykinin degradation with the converting-enzyme inhibitor ramipril. Cardiovasc Drugs Ther 1989; 3: 873–882.

    Article  PubMed  CAS  Google Scholar 

  71. Martorana PA, Kettenbach B, Breipohl G, Linz W, Schölkens BA. Reduction of infarct size by local angiotensin-converting enzyme inhibition is abolished by a bradykinin antagonist. Eur J Pharmacol 1990; 182: 395–396.

    Article  PubMed  CAS  Google Scholar 

  72. Hartman JC, Wall TM, Hullinger TG, Shebuski RJ. Reduction of myocardial infarct size in rabbits by ramiprilat: reversal by the bradykinin antagonist HOE 140. J Cardiovasc Pharmacol 1993; 21: 996–1003.

    Article  PubMed  CAS  Google Scholar 

  73. Liu Y-H, Yang X-P, Sharov VG, Sabbah HN, Scicli AG, Carretero OA. Role of kinins, nitric oxide and prostaglandins in the protective effect of ACE inhibitors on ischemia/reperfusion myocardial infarction in rats. Hypertension 1994; 24: 380 (abstract).

    Google Scholar 

  74. Hashimoto K, Hamamoto H, Honda Y, Hirose M, Furukawa S, Kimura E. Changes in components of kinin system and hemodynamics in acute myocardial infarction. Am Heart J 1978; 95: 619–626.

    Article  PubMed  CAS  Google Scholar 

  75. Yang X-P, Liu Y-H, Peterson E, Carretero OA. Effect of neutral endopeptidase 24.11 inhibition on myocardial ischemia/reperfusion injury: the role of kinins. J Cardiovasc Pharmacol 1997; 29: 250–256.

    Article  PubMed  CAS  Google Scholar 

  76. Wall TM, Sheehy R, Hartman JC. Role of bradykinin in myocardial preconditioning. J Pharmacol Exp Ther 1994; 270: 681–689.

    PubMed  CAS  Google Scholar 

  77. Parratt JR, Vegh A, Papp JG. Bradykinin as an endogenous myocardial protective substance with particular reference to ischemic preconditioning-a brief review of the evidence. Can J Physiol Pharmacol 1995; 73: 837–842.

    Article  PubMed  CAS  Google Scholar 

  78. Yang X-P, Liu Y-H, Scicli GM, Webb CR, Carretero OA. Role of kinins in the cardioprotective effect of preconditioning. Study of myocardial ischemia/reperfusion injury in B2 kinin receptor knockout mice and kininogen-deficient rats. Hypertension 1997; 30: 735–740.

    Article  PubMed  CAS  Google Scholar 

  79. Vegh A, Papp JG, Szekeres L, Parratt JR. Evidence that bradykinin contributes to the pronounced antiarrhythmic effects of ischaemic preconditioning. Br J Pharmacol 1994; 111: 193P (abstract).

    Google Scholar 

  80. Grover GJ, D’ Alonzo AJ, Parham CS, Darbenzio RB. Cardioprotection with the KATP opener cromakalim is not correlated with ischemic myocardial action potential duration. J Cardiovasc Pharmacol 1995; 26: 145–152.

    Article  PubMed  CAS  Google Scholar 

  81. Wall TM, Farrell AL, Hartman JC. Temporal relationship between bradykinin and KATP channels in the mechanism of cardioprotective ischemic preconditioning. Circulation 1995; 92 (Suppl I): I - 252 (abstract).

    Google Scholar 

  82. Katori M, Majima M. Preventive role of renal kallikrein-kinin system in the early phase of hypertension and development of new antihypertensive drugs. Adv Pharmacol 1998; 44: 147–224.

    Article  PubMed  CAS  Google Scholar 

  83. Gavras H, Faxon DP, Berkoben J, Brunner HR, Ryan TJ. Angiotensin converting enzyme inhibition in patients with congestive heart failure. Circulation 1978; 58: 770–776.

    Article  PubMed  CAS  Google Scholar 

  84. CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. The results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med 1987; 316: 1429–1435.

    Article  Google Scholar 

  85. Pfeffer MA, Braunwald E, Moyé LA, Basta L, Brown EJ Jr, Cuddy TE, et al. on behalf of the SAVE Investigators. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. N Engl J Med 1992; 327: 669–677.

    Article  PubMed  CAS  Google Scholar 

  86. The SOLVD Investigators. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 1992; 327: 685–691.

    Article  Google Scholar 

  87. Ball SG, Acute Infarction Ramipril Efficacy (AIRE) study investigators. Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. Lancet 1993; 342: 821–828.

    Google Scholar 

  88. Gavras H, Gavras I. Cardioprotective potential of angiotensin converting enzyme inhibitors. J Hyper-tens 1991; 9: 385–392.

    Article  CAS  Google Scholar 

  89. McDonald KM, Mock J, D’Aloia A, Parrish T, Hauer K, Francis G, Stillman A, Cohn JN. Bradykinin antagonism inhibits the antigrowth effect of converting enzyme inhibition in the dog myocardium after discrete transmural myocardial necrosis. Circulation 1995; 91: 2043–2048.

    Article  PubMed  CAS  Google Scholar 

  90. McDonald KM, Garr M, Carlyle PF, Francis GS, Hauer K, Hunter DW, et al. Relative effects of al-adrenoceptor blockade, converting enzyme inhibitor therapy, and angiotensin II subtype 1 receptor blockade on ventricular remodeling in the dog. Circulation 1994; 90: 3034–3046.

    Article  PubMed  CAS  Google Scholar 

  91. Stauss HM, Zhu Y-C, Redlich T, Adamiak D, Mott A, Kregel KC, Unger T. Angiotensin-converting enzyme inhibition in infarct-induced heart failure in rats: bradykinin versus angiotensin II. J Cardiovasc Risk 1994; 1: 255–262.

    PubMed  CAS  Google Scholar 

  92. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 1990; 81: 1161–1172.

    Article  PubMed  CAS  Google Scholar 

  93. GISSI-3 Study Group. Effects of lisinopril and transdermal glyceryl trinitrate singly and together on 6-week mortality and ventricular function after acute myocardial infarction. Lancet 1994; 343: 1115–1122.

    Google Scholar 

  94. Garg R, Yusuf S, for the Collaborative Group on ACE Inhibitor Trials. Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. JAMA 1995; 273: 1450–1456 (review).

    Article  PubMed  CAS  Google Scholar 

  95. Pfeffer JM, Fischer TA, Pfeffer MA. Angiotensin-converting enzyme inhibition and ventricular remodeling after myocardial infarction. Annu Rev Physiol 1995; 57: 805–826.

    Article  PubMed  CAS  Google Scholar 

  96. Pfeffer JM, Pfeffer MA, Braunwald E. Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res 1985; 57: 84–95.

    Article  PubMed  CAS  Google Scholar 

  97. McDonald KM, Rector T, Carlyle PF, Francis GS, Cohn JN. Angiotensin-converting enzyme inhibition and beta-adrenoceptor blockade regress established ventricular remodeling in a canine model of discrete myocardial damage. J Am Coll Cardiol 1994; 24: 1762–1768.

    Article  PubMed  CAS  Google Scholar 

  98. Dickstein K, Chang P, Willenheimer R, Haunso S, Remes J, Hall C, Kjekshus J. Comparison of the effects of losartan and enalapril on clinical status and exercise performance in patients with moderate or severe chronic heart failure. J Am Coll Cardiol 1995; 26: 438–445.

    Article  PubMed  CAS  Google Scholar 

  99. Dickstein K, Gottlieb S, Fleck E, Kostis J, Levine B, DeKock M, LeJemtel T. Hemodynamic and neurohumoral effects of the angiotensin II antagonist losartan in patients with heart failure. J Hypertens 1994; 12 (Suppl): S31 - S35.

    CAS  Google Scholar 

  100. Pitt B, Segal R, Martinez FA, Meurers G, Cowley AJ, Thomas I, et al, on behalf of ELITE Study Investigators. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet 1997; 349: 747–752.

    Article  PubMed  CAS  Google Scholar 

  101. Whitebread S, Mele M, Kamber B, de Gasparo M. Preliminary biochemical characterization of two angiotensin II receptor subtypes. Biochem Biophys Res Commun 1989; 163: 284–291.

    Article  PubMed  CAS  Google Scholar 

  102. Nakajima M, Hutchinson HG, Fujinaga M, Hayashida W, Morishita R, Zhang L, et al. The angiotensin II type 2 (AT2) receptor antagonizes the growth effects of the ATl receptor: gain-of-function study using gene transfer. Proc Natl Acad Sci USA 1995;92:10, 663–10, 667.

    Google Scholar 

  103. Siragy HM, Carey RM. The subtype-2 (AT2) angiotensin receptor regulates renal cyclic guanosine 3’,5’-monophosphate and AT receptor-mediated prostaglandin E2 production in conscious rats. J Clin Invest 1996; 97: 1978–1982.

    Article  PubMed  CAS  Google Scholar 

  104. Seyedi N, Xu X, Nasjletti A, Hintze TH. Coronary kinin generation mediates nitric oxide release after angiotensin receptor stimulation. Hypertension 1995; 26: 164–170.

    Article  PubMed  CAS  Google Scholar 

  105. Liu Y-H, Yang X-P, Nass O, Sabbah HN, Peterson E, Carretero OA. Chronic heart failure induced by coronary artery ligation in Lewis inbred rats. Am J Physiol 1997; 272: H722 - H727.

    PubMed  CAS  Google Scholar 

  106. Yang X-P, Sabbah HN, Liu Y-H, Sharov VG, Mascha EJ, Alwan I, Carretero OA. Ventriculographic evaluation in three rat models of cardiac dysfunction. Am J Physiol 1993; 266: H1946 - H1952.

    Google Scholar 

  107. Farhy RD, Carretero OA, Ho K-L, Scicli AG. Role of kinins and nitric oxide in the effects of angiotensin converting enzyme inhibitors on neointima formation. Circ Res 1993; 72: 1202–1210.

    Article  PubMed  CAS  Google Scholar 

  108. Lopez JJ, Lorell BH, Ingelfinger JR, Weinberg EO, Schunkert H, Diamant D, Tang S-S. Distribution and function of cardiac angiotensin AT1- and AT2-receptor subtypes in hypertrophied rat hearts. Am J Physiol 1994; 267: H844 - H852.

    PubMed  CAS  Google Scholar 

  109. Nio Y, Matsubara H, Murasawa S, Kanasaki M, Inada M. Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction. J Clin Invest 1995; 95: 46–54.

    Article  PubMed  CAS  Google Scholar 

  110. Suzuki J, Matsubara H, Urakami M, Inada M. Rat angiotensin II (type 1A) receptor mRNA regulation and subtype expression in myocardial growth and hypertrophy. Circ Res 1993; 73: 439–447.

    Article  PubMed  CAS  Google Scholar 

  111. Everett AD, Tufro-McReddie A, Fisher A, Gomez RA. Angiotensin receptor regulates cardiac hypertrophy and transforming growth factor-131 expression. Hypertension 1994; 23: 587–592.

    Article  PubMed  CAS  Google Scholar 

  112. Hecker M, Porsti I, Busse R. Mechanisms involved in the angiotensin II-independent hypotensive action of ACE inhibitors. Braz J Med Biol Res 1994; 27: 1917–1921.

    PubMed  CAS  Google Scholar 

  113. Korth P, Fink E, Linz W, Schölkens BA, Wohlfart P, Wiemer G. Angiotensin II receptor subtype-stimulated formation of endothelial cyclic GMP and prostacyclin is accompanied by an enhanced release of endogenous kinins. Pharm Pharmacol Lett 1995; 3: 124–127.

    Google Scholar 

  114. Brosnihan KB, Li P, Ferrario CM. Angiotensin-(1–7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension 1996; 27: 523–528.

    Article  PubMed  CAS  Google Scholar 

  115. Lo M, Liu K-L, Lantelme P, Sassard J. Subtype 2 of angiotensin II receptors controls pressurenatriuresis in rats. J Clin Invest 1995; 95: 1394–1397.

    Article  PubMed  CAS  Google Scholar 

  116. Dahlöf B. Regression of left ventricular hypertrophy-are there differences between antihypertensive agents. Cardiology 1992; 81: 307–315.

    Article  PubMed  Google Scholar 

  117. Liebson PR, Grandits GA, Dianzumba S, Prineas RJ, Grimm RH Jr, Neaton JD, Stamler J, for the Treatment of Hypertension Study Research Group. Comparison of five antihypertensive monotherapies and placebo for change in left ventricular mass in patients receiving nutritional-hygienic therapy in the Treatment of Mild Hypertension Study (TOMHS). Circulation 1995; 91: 698–706.

    Article  PubMed  CAS  Google Scholar 

  118. Sharpe N, Murphy J, Smith H, Hannan S. Preventive treatment of asymptomatic left ventricular dysfunction following myocardial infarction. Eur Heart J 1990; 11 (Suppl B): 147–156.

    Article  PubMed  Google Scholar 

  119. Lindpaintner K, Ganten D. The cardiac renin-angiotensin system. An appraisal of present experimental and clinical evidence. Circ Res 1991; 68: 905–921.

    Article  PubMed  CAS  Google Scholar 

  120. Dzau VJ, Re RN. Evidence for the existence of renin in the heart. Circulation 1987;75(Suppl I): I-134-I-136.

    Google Scholar 

  121. Sadoshima J, Xu Y, Slayter HS, Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 1993; 75: 977–984.

    Article  PubMed  CAS  Google Scholar 

  122. Linz W, Schölkens BA. Role of bradykinin in the cardiac effects of angiotensin-converting enzyme inhibitors. J Cardiovasc Pharmacol 1992; 20 (Suppl 9): S83 - S90.

    Article  PubMed  CAS  Google Scholar 

  123. Minshall RD, Nakamura F, Becker RP, Rabito SF. Characterization of bradykinin B2 receptors in adult myocardium and neonatal rat cardiomyocytes. Circ Res 1995; 76: 773–780.

    Article  PubMed  CAS  Google Scholar 

  124. Cohn JN. Structural basis for heart failure. Ventricular remodeling and its pharmacological inhibition. Circulation 1995; 91: 2504–2507 (editorial).

    Article  PubMed  CAS  Google Scholar 

  125. Baur LH, Schipperheyn JJ, van der Laarse A, Souverijn JH, Frolich M, de Groot A, et al. Combining salicylate and enalapril in patients with coronary artery disease and heart failure. Br Heart J 1995; 73: 227–236.

    Article  PubMed  CAS  Google Scholar 

  126. Carretero OA, Scicli AG. Kinins paracrine hormone. Kidney Int 1988;34(Suppl 26):S-52-S-59.

    Google Scholar 

  127. Liu Y-H, Yang X-P, Sharov VG, Sigmon DH, Sabbah HN, Carretero OA. Paracrine systems in the cardioprotective effect of angiotensin-converting enzyme inhibitors on myocardial ischemia/reperfusion injury in rats. Hypertension 1996; 27: 7–13.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carretero, O.A. (1999). Kinins in the Heart. In: Share, L. (eds) Hormones and the Heart in Health and Disease. Contemporary Endocrinology, vol 21. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-708-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-708-6_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5420-9

  • Online ISBN: 978-1-59259-708-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics