Skip to main content

HA-SAL2

Novel Bone Graft Substitute with Composition Mimicking Bone Mineral

  • Chapter
Biomaterials Engineering and Devices: Human Applications

Abstract

The advancement in orthopedic surgery is attributed, at least partially, to the continuous innovations in the field of implantable bioactive materials. Hydroxy apatite (HA) is the major inorganic component of calcified tissues in the human body (1,2), is the end product of the biological mineralization process, and has high biocompatibility with living tissues (3,4). HA and tricalcium phosphate (TCP) are regarded as bioactive implants, because of their chemical affinity, osteoconductivity, and connectivity with bone tissues. HA and TCP are the two calcium phosphates (CaPs) most commonly used in the clinic because of calcium:phosphate (Ca:P) ratios similar to those of natural bone (5). CaP ceramics are also very useful as carriers, in bioengineering applications, for supporting growth of anchorage-dependent animal cells (6). Sintered HA is also used to improve percutaneous implants, suggesting that this ceramic has also the potential to allow cell growth (7). The nature and degree of tissue response to implants depend on the characteristics of the material: chemical composition, surface texture, porosity, density, shape, and size (8–10). However, the bone and soft tissues around the implant can also be adversely affected by devicerelated factors, acting over a period of years (11,12). Indeed, biocompatibility is evaluated by host tissue responses, assessed by morphological and histological examinations of the implant site (12). Since it is difficult to examine the in vivo reactions of a specific cell type to the implant, because of various cell populations and biofactors present at the implantation site, in vitro models are also used (13–16). Recently, it was suggested that the adhesiveness and growth of cells on ceramics are regulated by a time-dependent variation of the surface structure. To this point, cell functions are significantly affected by the surface structure and chemical composition of the ceramics (9). Adhesiveness can be improved by modifying the surface, e.g., with serum proteins, fibronectin, or collagen (17,18).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Posner AS. Bone mineral and the mineralization process. Bone Mineral Res 1987; 5: 65–116.

    CAS  Google Scholar 

  2. Posner AS. Mineralization of bone. Clin Orthop 1985; 200: 87–99.

    CAS  Google Scholar 

  3. Ohtsuka S. Basic and clinical study of HA. J Jpn Soc Biomater 1989; 7: 59–72.

    Google Scholar 

  4. Bucholz RW, Carlton A, and Holmes RE. Hydroxy–apatite and tricalcium phosphate as bone graft substitutes. Orthop Clin North Am 1987; 18: 323–334.

    CAS  Google Scholar 

  5. Kitsugi T, Yamanuro T, Nakamura S, Kotani T, Kokubo T, and Takenachi H. Four calcium phosphate ceramics as bone substitutes for non-weight-bearing. Biomaterials 1993; 14: 216–224.

    Article  CAS  Google Scholar 

  6. Suzuki T, Toriyoma M, Kawamoto Y, Yokogawa Y, and Kawamura S. Adhesiveness and growth of anchorage-dependent animal cells on biocompatible ceramic culture carriers. J Fermet Bioenz 1991; 72: 450–456.

    Article  CAS  Google Scholar 

  7. Niohihara K. Studies on artificial root therapeutics with new tailored hydroxyapatite root. J Jpn Soc Biomat 1993; 11: 135–152.

    Google Scholar 

  8. Yubao L, Klein CPAT, Xingdong Z, and De Groot K. Formation of a bone apatite-like layer on the surface of porous hydroxyapatite ceramics. Bioma-terials 1994; 15: 835–841.

    Article  CAS  Google Scholar 

  9. Suzuki T, Yamamoto T, Toriyama M, Nishizawa K, Yokogawa Y, Mucalo M, et al. Surface instability of calcium phosphate ceramics in tissue culture medium and the effect on adhesion and growth of anchorage-dependent animal cells. J Biomed Mater Res 1997; 34: 507–517.

    Article  CAS  Google Scholar 

  10. Ducheyne P. Bioceramics: material characteristics versus in-vivo behavior. J Biomed Mater Res Appl Biomater 1987; 21A: 219–236.

    CAS  Google Scholar 

  11. Remes A and Williams DF. Immune response in biocompatibility. Biomaterials 1992; 13: 731–743.

    Article  CAS  Google Scholar 

  12. Amstutz HC, Campbell P, Kossovsky N, and Clarke IC. Mechanism and clinical significance of wear debris-induced osteolysis. Clin Orthop 1992; 276: 7–18.

    Google Scholar 

  13. Sgouras D and Duncan S. Methods for the evaluation of biocompatibility of soluble synthetic polymers which have potential biomedical use. 1. Use of the MTT colorimetric assay as a preliminary screen for the evaluation of in-vitro cytotoxicity. J Mater Sci Mater Med 1990; 1: 61–68.

    Article  CAS  Google Scholar 

  14. Ben-Bassat H, Klein BY, Lerner E, Azoury R, Rahamim E, Shlomai Z and Sarig S. In-vitro biocompatibility study of a new hydroxyapatite ceramic HA-SAL1: comparison to bioactive bone substitute ceramics. Cell Mater 1994; 4: 37–50.

    CAS  Google Scholar 

  15. Sautier JM, Nefussi JR, and Forest N. Surface reactive biomaterials in osteoblast cultures: an ultra-structure study. Biomaterials 1993; 13: 400–402.

    Article  Google Scholar 

  16. Sun JS, Tsuang YH, Liao CJ, Liu HC, Hang YS, and Lin FH. Effect of calcium phosphate particles on the growth of osteoblasts. J Biomed Mater Res 1997; 37: 324–334.

    Article  CAS  Google Scholar 

  17. Grinell F. Serum dependence of baby hamster kidney attachment to a substratum. Exp Cell Res 1976; 97: 265–274.

    Article  Google Scholar 

  18. Amphlett GW and Hrinda ME. Binding of calcium to human fibronectin. Biochem Biophys Res Com-mun 1983; 111: 1045–1452.

    Article  CAS  Google Scholar 

  19. Wise DL, Trantolo DJ, Altobelli DE, Yaszemski MJ, Gresser JD, and Schwartz ER. (eds) Encyclopedic Handbook of Biomaterials and Bioengineering. Part A: Materials; Part B: Applications 1995; M Dekker, New York.

    Google Scholar 

  20. Hench LL. Bioceramics: from concept to clinic. J Am Ceramics Soc 1991; 74: 1487–1510.

    Article  CAS  Google Scholar 

  21. De Groot K. Bioceramics of calcium phosphate: preparation and properties, in Bioceramics of Calcium Phosphates 1983; CRC, Boca Raton, FL pp. 99–114.

    Google Scholar 

  22. Gao TY, Tuominen TK, Lindholm TS, Kommonen B, and Lindholm TC. Morphological and biome-chanical difference in healing segmental tibial defects implanted with Biocoral® or tricalcium phosphate cylinders. Biomaterials 1997; 18: 219–223.

    Article  CAS  Google Scholar 

  23. Lerner E, Sarig S, and Azoury R. Enhanced maturation of hydroxyapatite from aqueous solutions using microwave irradiation. J Miner Sci 1991; 2: 44–47.

    Google Scholar 

  24. Sarig S, Apfelbaum F, and Kahana F. Upgrading of hydroxyapatite ceramic biocompatibility by incorporation of a-tricalcium phosphate. Bioceramics 1997; 10: 397–400.

    CAS  Google Scholar 

  25. Hench LL and Ethridge EC. Biomaterials: an intra-facial approach. Biophys Bioeng Series 1982; 4: 279–288.

    Google Scholar 

  26. Davies JE and Matsuda T. Extracellular matrix production by Osteoblasts on bioactive substrata in vitro. Scan Microsc 1988; 2: 1445–1452.

    CAS  Google Scholar 

  27. Ito G, Matsuda T, Inoue N, and Kamegan T. Biologic comparison of the tissue interface to bioglass. J Biomed Mater Res 1987; 21: 585–497.

    Article  Google Scholar 

  28. Bruijn JD, Klein CPAT, De Groot K, and Van Blitterswijk CA. Ultrastructure of the bone-hydroxyapatite interface in vitro. J Biomed Mater Res 1992; 26: 1362–1382.

    Google Scholar 

  29. Taylor SE and Gibbons DF. Effect of surface texture on the soft tissue response to polymer implants. J Biomed Mater Res 1983; 17: 205–227.

    Article  Google Scholar 

  30. Bagambisa FB and Joos U. Preliminary studies on the phenomenological behavior of osteoblasts cultures on the hydroxyapatite ceramics. Biomaterials 1990; 11: 50–56.

    Article  CAS  Google Scholar 

  31. Davies JE, Causton B, Bovell Y, Davy K, and Sturt CS. Migration of osteoblasts over substrata of discrete surface change. Biomaterials 1986; 7: 231–233.

    Article  CAS  Google Scholar 

  32. Shimazaki K and Mooney V. Comparative study of porous hydroxyapatit and tricalcium phosphate as bone sunstitute. J Orthop Res 1985; 3: 301–310.

    Article  CAS  Google Scholar 

  33. Malick MA, Puelo DA, Bizios R, and Doremus RH. Osteoblasts on hydroxyapatite, alumina and bone surface in vitro: morphology during the first 2 hours of attachment. Biomaterials 1992; 13: 123–128.

    Article  Google Scholar 

  34. Nishizana K, Toriyama M, Suzuki T, Kawamoto Y, and Yokogawa Y. Effects of surface wettability and zeta potential of bioceramics on the adhesiveness and anchorage-dependent animal cells. J Ferment Bioeng 1993; 75: 435–437.

    Article  Google Scholar 

  35. Toriyama M, Kawamoto Y, Suzuki T, Yokogawa Y, Nishizawa K, and Nagata F. Wettability of calcium phosphate ceramics by water. J Ceramics Soc Jpn 1995; 103: 46–49.

    Article  CAS  Google Scholar 

  36. Anderson HC. Matrix vesicle calcification: review and update. Bone and Mineral Res 1985; 3: 109–149.

    CAS  Google Scholar 

  37. Boskey AL. Current concepts of physiology and biochemistry of calcification. Clin Orthop Res 1981; 157: 225–257.

    CAS  Google Scholar 

  38. Nao M, Kotani S, and Fujita Y. Differences in ceramic-bone interface between surface-active ceramics and resorbable ceramics: a study by scanning and transmission electron microscopy. J Bio-med Mater Res 1992; 26: 255–267.

    Article  Google Scholar 

  39. Niki M. Comparative study of the histological, physical and chemical properties of bone-biomate-rial interface. J Jap Soc Biomater 1994; 12: 5–21.

    CAS  Google Scholar 

  40. Villanueva JE and Nimmi ME. Modulation of osteogenesis by isolated calvaria cells: a model for tissue interactions. Biomaterials 1990; 11: 13–15.

    Article  Google Scholar 

  41. Brook IM, Craig GT, and Lamb DJ. In-vitro interaction between primary bone organ culture, glass-ionomer cements and hydroxyapatite/tricalcium phosphate ceramics. Biomaterials 1991; 12: 179–186.

    Article  CAS  Google Scholar 

  42. Farley JR, Hall SL, Herring S, Tarbauz NM, Matsu-yama T, and Wergedal JE. Skeletal alkaline phosphatase specific activity ia an index of the osteoblastic phenotype in subpopulations of the human osteosarcoma cell line Saos-2. Metabolism 1991; 40: 664–671.

    Article  CAS  Google Scholar 

  43. Rodan SB, Imai Y, Thiede MA, Wesolowski G, Thompson D, Bar-Shavit Z, et al. Characterization of a human osteosarcoma cell line (Saos-2) with osteoblastic properties. Cancer Res 1987; 47: 4961–4966.

    CAS  Google Scholar 

  44. Weiss RE and Reddi AH. Synthesis and localization of fibronectin during collagenous matrix mesenchymal cell interaction and differentiation of cartilage and bone in-vitro. Proc Natl Acad Sci USA 1980; 77: 2074–2078.

    Article  CAS  Google Scholar 

  45. Harada Y, Wang JT, Doppalapudi VA, Willis AA, Jasty M, Harris WH, Nagase M, and Goldring SR. Differential effects of different forms of hydroxyapatite/tricalcium phosphate particulates on human monocyte/macrophage, in vitro. J Biomed Mater Res 1996; 31: 19–26.

    Article  CAS  Google Scholar 

  46. Cheung HS, Story MT, and McCarty DJ. Mitogenic effects of hydroxyapatite and calcium phosphate dihydrate crystals on cultured mammalian cells. Arthritis Rheum 1984; 27: 668–674.

    Article  CAS  Google Scholar 

  47. Nagase M, Barker DG, and Schumacher R Jr. Prolonged inflammatory reactions induced by artificial ceramics in the rat air pouch model. J Rheumatol 1988; 15: 1334–1338.

    CAS  Google Scholar 

  48. Ross L, Benghuzzi H, Tucci M, Callender M, Cason Z, and Spence L. Effect of HA, TCP and ALCAP bioceramic capsules on the viability of human monocyte and monocyte derived macrophages. Biomed Sei Instrum 1996; 32: 71–79.

    CAS  Google Scholar 

  49. Abramov Y, Schenber JG, Lewin A, Friedler S, Nisman B, and Barak V. Plasma inflammatory cytokines correlate to the ovarian hyperstimulation syndrome. Hum Reprod 1996; 11: 1381–1386.

    Article  CAS  Google Scholar 

  50. Pleilschrifter J and Mundy GR. Modulation of TGF-? activity in bone cultures by osteotropic hormones. Proc Natl Acad Sci USA 1987; 84: 2024–2028.

    Article  Google Scholar 

  51. Leichter I and Bloch B. Evaluation of calcium phosphate ceramic implant by non-invasive techniques. Biomaterials 1992; 13: 478–482.

    Article  CAS  Google Scholar 

  52. Moshieff R, Klein BY, Leichter I, Chaimsky G, Nyska A, Peyser A, and Segal D. Use of dual-energy X-ray absorptiometry (DEXA) to follow mineral content changes in small ceramic implants in rats. Biomaterials 1992; 13: 462–466.

    Article  Google Scholar 

  53. Wilson CR and Madsen M. Dichromatic absorptiometry of vertebrate bone mineral content. Invest Radiol 1977; 12: 180–184.

    Article  CAS  Google Scholar 

  54. Uchida A, Araki N, Shinto Y, Yoshikawa H, and Ono K. Use of calcium ceramic hydroxyapatite in bone tumor surgery. J Bone Joint Surg 1990; 72B: 298–302.

    CAS  Google Scholar 

  55. Ben-Bassat H, Klein BY, and Leichter I. Bio-compatibility of a new apatite (HA-SAL1) as a bone graft substitute, in Encyclopedic Handbook of Biomaterials and Bioengineering, Part A, vol. 2, 1995; (Wise DL, et al., eds), M. Dekker, New York, pp. 1545–1563.

    Google Scholar 

  56. Giannini S, Moroni A, Pompilli M, Cercearelli F, Cantagalli S, Pezzuto V, et al. Bioceramics in orthopedic surgery: state of the art and preliminary results. Ital Orthop Traumatol 1992; 18: 431–441.

    CAS  Google Scholar 

  57. Einhorn TA. Enhancement of fracture healing. J Bone Joint Surg Am 1995; 77: 940–956.

    CAS  Google Scholar 

  58. Klein C, De Groot K, Weigum C, Yubao L, and Xingdong Z. Osseous substance formation inducedin porous calcium phosphate ceramics in soft tissues. Biomaterials 1994; 15: 31–34.

    Article  CAS  Google Scholar 

  59. Mann HB and Whitney DR. On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 1947; 18: 50–60.

    Article  Google Scholar 

  60. Matsuda T, Yliheikkila PK, Felton DA, and Cooper LF. Generalizations regarding the process and phenomenon of osseointegration. Part I: in-vivo studies. Inter J Oral Maxillofac Implants 1998; 13: 17–29.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ben-Bassat, H. et al. (2000). HA-SAL2. In: Wise, D.L., Trantolo, D.J., Lewandrowski, KU., Gresser, J.D., Cattaneo, M.V., Yaszemski, M.J. (eds) Biomaterials Engineering and Devices: Human Applications . Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-197-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-197-8_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-227-8

  • Online ISBN: 978-1-59259-197-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics