Skip to main content

Synthetic Osseous Grafting

A Necessary Component to Oral Reconstruction

  • Chapter
Biomaterials Engineering and Devices: Human Applications

Abstract

Dental bone grafts (BGs) play an important role in situations in which structural or functional support, or both, is necessary. BGs are used to provide a scaffold for bone regeneration: promoting union of osteotomies and fractures; augmenting bony defects caused by trauma or surgery; restoring bone loss caused by dental disease; filling extraction sites to preserve the height and width of the alveolar ridge (ridge preservation); and augmenting and reconstructing the alveolar ridge (1,2). In addition to alveolar ridge preservation and augmentation and repair of bony defects, grafting is being performed to improve the outcome of implant dentistry through sinus lift procedures of the maxillary sinus and to fill bony voids (e.g., in the immediate postextraction implant) and the osteotomy created during traditional implant surgery (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hislop WS, Finlay PM, and Moos KF. Preliminary study into the uses of anorganic bone in oral and maxillofacial surgery. Br J Oral Maxillofac Surg 1993; 31: 149–153.

    Article  CAS  Google Scholar 

  2. Lane JM. Bone graft substitutes. Western J Med 1995; Dec: 565–567.

    Google Scholar 

  3. Gross J. Bone grafting materials for dental applications: a practical guide. Compendium 1997; 18: 1013–1036.

    CAS  Google Scholar 

  4. Schepers E, DeClerco M, Ducheyne P, and Kempeneers R. Bioactive glass particulate material as a filler for bone lesions. J Oral Rehabil 1991; 18: 439–452.

    Article  CAS  Google Scholar 

  5. Schepers EJG, Ducheyne P, Barbier L, and Schepers S. Bioactive glass particles of narrow size range: a new material for the repair of bone defects. Implant Dent 1993; 2: 151–156.

    Article  CAS  Google Scholar 

  6. Rummelhart JM, Mellonig JT, Gray JL, and Towle HJ. Comparison of freeze-dried bone allograft and demineralized freeze-dried bone allograft in human periodontal osseous defects. J Periodontal 1989; 60: 655–663.

    Article  CAS  Google Scholar 

  7. Ashman A. Use of synthetic bone materials in dentistry. Compend Contin Educ Dent 1984; 13: 1020–1034.

    Google Scholar 

  8. Ashman A. Clinical applications of synthetic bone in implantationdentistry, part I. Gen Dent 1992; Nov/Dec: 481-487.

    Google Scholar 

  9. Ashman A. Clinical applications of synthetic bone in dentistry, Part II: periodontal and bony defects in conjunction with dental implants. Gen Dent 1993; Jan/Feb: 37–44.

    Google Scholar 

  10. Boyne P. Use of HTR in tooth extraction sockets to maintain the alveolar ridge height and increase concentration of alveolar bone matrix. Gen Dent 1995; 43: 470–473.

    CAS  Google Scholar 

  11. Frame JW. Hydroxyapatite as a biomaterial for alveolar ridge augmentation. Int J Oral Maxillofac Surg 1987; 16: 642–655.

    Article  CAS  Google Scholar 

  12. Pinholt EM, Bang G, and Haanaes HR. Alveolar ridge augmentation in rats by combined hydroxylapatite and osteoconductive material. Scand J Dent Res 1991; 99: 64–74.

    CAS  Google Scholar 

  13. Misch CE and Dietsh F. Bone-grafting materials in implant dentistry. Implant Dent 1993; 2: 158–167.

    Article  CAS  Google Scholar 

  14. Second-hand bones? (editorial) Lancet 1992; 340: 1443.

    Google Scholar 

  15. Koole R, Bosker H, and van der Dussen FN. Late secondary autogenous bone grafting in cleft patients comparing mandibular (ectomesenchymal) and iliac crest (mesenchymal) grafts. J Cranio Max Fac Surg 1989; 17: 28–30.

    Article  Google Scholar 

  16. Garg AK. Practical Implant Dentistry 1996; Tay-lor, Houston, TX, 89-101.

    Google Scholar 

  17. Mellonig JT. Decalcified freeze-dried bone allograft as an implant material in human periodontal defects. Int J Periodont Restorative Dent 1984; 6: 41–55.

    Google Scholar 

  18. Tatum OJ Jr, Lebowitz MS, Tatum CA, and Borgner RA. Sinus augmentation: rationale, development, long-term results. NY State Dent J 1993; May: 43-48.

    Google Scholar 

  19. Tatum OJ Jr. Osseous grafts in intra-oral sites. J Oral Implantol 1996; 22: 51–52.

    Google Scholar 

  20. Christensen GJ. Ridge preservation: Why not ? JADA 1996; 127: 669–670.

    CAS  Google Scholar 

  21. Meffert RM, Thomas JR, Hamilton KM, and Brownstein CN. Hydroxylapatite as an alloplastic graft in the treatment of human periodontal osseous implants. defects. J Periodontal 1985; 56: 63–73.

    Article  CAS  Google Scholar 

  22. Stahl SS and Froum SJ. Histologic and clinical responses to porous hydroxylapatite implants in human periodontal defects. J Periodontal 1987; 58: 689–695.

    Article  CAS  Google Scholar 

  23. Boyle PJ. Personal communication.

    Google Scholar 

  24. Frame JW, Rout PG, and Browne RM. Ridge augmentation using solid and porous hydroxylapatite particles with and without autogenous bone or plaster. J Oral Maxillofac Surg 1987; 45: 771–777.

    Article  CAS  Google Scholar 

  25. Boyne PJ. Advances in preprosthetic surgery and. Curr Opinion Dent 1991; 1: 277–281.

    CAS  Google Scholar 

  26. Jarcho M. Biomaterial aspects of calcium phos-phates. Dent Clin North Am 1986; 30: 25–47.

    CAS  Google Scholar 

  27. White E and Shors EC. Biomaterial aspects of Inter-pore-200 porous hydroxyapatite. Dent Clin North Am 1986; 30: 49–67.

    CAS  Google Scholar 

  28. Pinholt EM, Bang G, and Haanaes HR. Alveolar ridge augmentation in rats by BIO-OSS. Scan J Gen Dent Dent Res 1991; 99: 154–161.

    CAS  Google Scholar 

  29. Boyne PJ. Osseous Reconstruction of the Maxilla and the Mandible: Surgical Techniques Using Tita-nium Mesh and Bone Mineral, 1996; Quintessence.

    Google Scholar 

  30. Yukna RA. Clinical evaluation of coralline calcium carbonate as a bone replacement graft material in human periodontal osseous defects. J Periodontal 1994; 65: 177–185.

    Article  CAS  Google Scholar 

  31. Froum S, et al. Treating fresh extraction sockets with an alloplast prior to implant placement: clini-cal and histological case reports. Pract Perio Aesth Dent (in press).

    Google Scholar 

  32. Schepers EJG and Pinruethai P. Bioceramics,vol.6 1993; Butterworth-Heinemann, 113–116.

    CAS  Google Scholar 

  33. Rosenlicht J. Immediate postextraction placement of an alloplast and titanium screw implant: a seven-year case presentation.Practical Periodont Aes-thetic Dent 1993; Dec.

    Google Scholar 

  34. Ashman A. Ridge preservation for immediate postextraction implants: 8 yr study. Pract Perio Aesth Dent 7(2): 85–97.

    Google Scholar 

  35. Sarnachiaro O, et al. Immediate implantation of osseointegrated implants filled with Bioplant HTR Synthetic Bone into extraction sockets of Cyno-molgus monkeys. (Macaca fascicularis): longitudi-nal study. Histologic observations. (in publication).

    Google Scholar 

  36. Szabo G, et al. HTR polymer and sinus elevation: a human histologic evaluation. J Long-Term Effects Med Implants 1992; 2: 81–92.

    CAS  Google Scholar 

  37. Wilson J and Low SB. Bioactive ceramics for perio-dontal treatment: comparative studies in the Patus monkey. J Appl Biomater 1992; 3: 123–129.

    Article  CAS  Google Scholar 

  38. Wilson J, Clark AE, Hall M, and Hench LL. Tissue response to Bioglass endosseous ridge maintenance J Oral Implantol 1993; 19: 295–302.

    CAS  Google Scholar 

  39. Yukna RA. Clinical evaluation of HTR polymer bone replacement grafts in human mandibular class II molar functions. J Periodontol, April 1994; 342–349.

    Google Scholar 

  40. Fetner AE, Hartigan MS, and Low SB. Periodontal repair using PerioGlas in nonhuman primates: clinical and histologic observations. Compend Contin Educ Dent 15: 932–938.

    Google Scholar 

  41. Greenspan DC. Bioglass bioactivity and clinical use. Presented at the Dent Implant Clin Res Group Annual Meeting April 27–29, 1995; St. Thomas, V I.

    Google Scholar 

  42. Ducheyne P, Bianco P, Radin S, and Schepers E. Bone-bonding biomaterials 1992; Reed Healthcare Comm, The Netherlands, pp. 1–12.

    Google Scholar 

  43. Wozney JM. Potential role of bone morphogenetic proteins in periodontal reconstruction. J Periodontal 1995; 66: 506–510.

    Article  CAS  Google Scholar 

  44. New bone? (bone grafts using bone morphogenetic proteins) Lancet 1992; 339: 463–465.

    Google Scholar 

  45. Boyne PJ. Bone induction and the use of HTR polymer as a vehicle of osseous inductor materials. Compendium,1988; (Suppl 10): 337–341.

    Google Scholar 

  46. Boyne PJ and Scheer PM. Bone inductive effects of skeletal grown factor with hydroxylapatite and synthetic matrices. J Oral and Maxillofac Surg 1989; 10: 382–389.

    Google Scholar 

  47. Block MS and Kent JN. Healing of mandibular ridge augmentation using hydroxylapatite with and without autogenous bone in dogs. J Oral Maxillofac Surg 1985; 43: 3–7.

    Article  CAS  Google Scholar 

  48. Kraut RA. Composite graft for mandibular alveolar ridge augmentation: a preliminary report. J Oral Maxillofac Surg 1985; 43: 856–859.

    Article  CAS  Google Scholar 

  49. Kent JN, Finger IM, Quinn JH, and Guerra LR. Hydroxylapatite alveolar ridge reconstruction: clinical experiences, complications, and technical modifications. J Oral Maxillofac Surg 1986; 44: 37–49.

    Article  CAS  Google Scholar 

  50. Stahl SS, Froum SJ, and Tarnow D. Human clinical and histologic responses to the placement of HTR polymer particles in 11 intrabony lesions. J Periodontol 1990; 61: 269–274.

    Article  CAS  Google Scholar 

  51. Melcher AH. On the repair potential of periodontal tissues. J Periodontol 1976; 47: 256–260.

    Article  CAS  Google Scholar 

  52. Poison AM, et al. Guided tissue regeneration in human furcation defects after using a biodegradable barrier: a multi-center feasibility study. J Periodontol May, 1995; 377–385.

    Google Scholar 

  53. Sottosanti J. Calcium sulfate: a biodegradable and biocompatible barrier for guided tissue regeneration. Compend Cont Ed Dent 1992; 13: 226.

    CAS  Google Scholar 

  54. Sottosanti J. Aesthetic extractions with calcium sulfate and the principles of guided tissue regeneration. Pract Periodont Aesthet Dent 1993; 5: 61.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ashman, A., Gross, J.S. (2000). Synthetic Osseous Grafting. In: Wise, D.L., Trantolo, D.J., Lewandrowski, KU., Gresser, J.D., Cattaneo, M.V., Yaszemski, M.J. (eds) Biomaterials Engineering and Devices: Human Applications . Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-197-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-197-8_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-227-8

  • Online ISBN: 978-1-59259-197-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics