Skip to main content

Enhancing Cortical Allograft Incorporation Processing by Partial Demineralization and Laser Perforation

A Histologic, Biomechanical, and Immunological Study

  • Chapter
Biomaterials Engineering and Devices: Human Applications

Abstract

The management of large skeletal defects continues to present a major challenge to orthopedic surgeons, particularly when the problem arises in young patients, in whom artificial devices and joint implants are likely to fail early. Both cemented (1,2) and uncemented (3–5) devices have significant complications in children and young adults. Therefore, development of a system that provides a biologic alternative seems eminently worthwhile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mintzer CM, Robertson DD, Rackemann S, Ewald FC, Scott RD, and Spector M. Bone loss in the distal anterior femur after total knee arthroplasty. Clin Orthop 1990; 260: 135–143.

    Google Scholar 

  2. Thornhill TS, Ozuna RM, Shortkroff S, Keller K, Sledge CB, and Spectro M. Biochemical and histological evaluation of the synovial-like tissue around failed (loose) total joint replacement prostheses in human subjects and a canine model. Biomaterials 1990; 11: 69–72.

    CAS  Google Scholar 

  3. Hill GE and Droller DG. Acute and subacute deep infection after uncemented total hip replacement using antibacterial prophylaxis. Orthop Rev 1989; 18: 617–623.

    CAS  Google Scholar 

  4. Kim YH and Franks DJ. Cementless revision of cemented stem failures associated with massive femoral bone loss. A technical note. Orthop Rev 1992; 21: 375–380.

    CAS  Google Scholar 

  5. Spector M. Historical review of porous-coated implants. J Arthroplasty 1987; 2: 163–177.

    Article  CAS  Google Scholar 

  6. Cara JA and Canadell J. Limb salvage for malignant bone tumors in young children. J Pediatr Orthop 1994; 14: 112–118.

    Article  CAS  Google Scholar 

  7. Davis A, Bell RS, Allan DG, Langer F, Czitrom AA, and Gross AE. Fresh osteochondral transplants in the treatment of advanced giant cell tumors [in German]. Orthopade 1993; 22: 146151.

    Google Scholar 

  8. Gebhardt MC, Roth YF, and Mankin HJ. Osteoarticular allografts for reconstruction in the proximal part of the humerus after excision of a musculo-skeletal tumor. J Bone Joint Surg Am 1990; 72: 334–345.

    CAS  Google Scholar 

  9. Gitelis S and Piasecki P. Allograft prosthetic composite arthroplasty for osteosarcoma and other aggressive bone tumors. Clin Orthop 1991; 270: 197–201.

    Google Scholar 

  10. Koskinen EV. Wide resection of primary tumors of bone and replacement with massive bone grafts: an improved technique for transplanting allogeneic bone grafts. Clin Orthop 1978; 134: 302–319.

    Google Scholar 

  11. Mankin HJ, Doppelt SH, Sullivan TR, and Tom-ford WW. Osteoarticular and intercalary allograft transplantation in the management of malignant tumors of bone. Cancer 1982; 50: 613–630.

    Article  CAS  Google Scholar 

  12. Mankin HJ, Fogelson FS, Thrasher AZ, and Jaffer F. Massive resection and allograft transplantation in the treatment of malignant bone tumors. N Engl J Med 1976; 294: 1247–1255.

    Article  CAS  Google Scholar 

  13. Mankin HJ, Springfield DS, Gebhardt MC, and Tomford WW. Current status of allografting for bone tumors. Orthopedics 1992; 15: 1147–1154.

    CAS  Google Scholar 

  14. Mnaymneh W and Malinin T. Massive allografts in surgery of bone tumors. Orthop Clin North Am 1989; 20: 455–467.

    CAS  Google Scholar 

  15. Tomford WW, Bloem RM, and Mankin HJ. Osteoarticular allografts. Acta Orthop Belg 1992; 57 (Suppl 2): 98–102.

    Google Scholar 

  16. Wang JW and Shih CH. Allograft transplantation in aggressive or malignant bone tumors. Clin Orthop 1993; 203–209.

    Google Scholar 

  17. Jaffe KA, Morris SG, Sorrell RG, Gebhardt MC, and Mankin HJ. Massive bone allografts for traumatic skeletal defects. South Med J 1991; 84: 975–982.

    Article  CAS  Google Scholar 

  18. Mahomed MN, Beaver RJ, and Gross AE. Longterm success of fresh, small fragment osteochondral allografts used for intraarticular post-traumatic defects in the knee joint. Orthopedics 1992; 15: 1191–1199.

    CAS  Google Scholar 

  19. Gitelis S, Heligman D, Quill G, and Piasecki P. Use of large allografts for tumor reconstruction and salvage of the failed total hip arthroplasty. Clin Orthop 1988; 231: 62–70.

    Google Scholar 

  20. Glowacki J. Cellular reactions to bone-derived material. Clinical Orthop 1996; 324: 47–54.

    Article  Google Scholar 

  21. Kondo K and Nagaya I. Bone incorporation of frozen femoral head allograft in revision total hip replacement. Nippon Seikeigeka Gakkai Zasshi 1993; 67: 408–416.

    CAS  Google Scholar 

  22. Martin WR and Sutherland CJ. Complications of proximal femoral allografts in revision total hip anthroplasty. Clin Orthop 1993; 295: 161–167.

    Google Scholar 

  23. Pak JH, Paprosky WG, Jablonsky WS, and Law-rence JM. Femoral strut allografts in cementless revision total hip arthroplasty. Clin Orthop 1993; 295: 172–178.

    Google Scholar 

  24. Ries MD, Gomez MA, Eckhoff DG, Lewis DA, Brodie MR, and Wiedel JD. An in vitro study of proximal femoral allograft strains in revision hip arthroplasty. Med Eng Phys 1994; 16: 292–296.

    Article  CAS  Google Scholar 

  25. Berrey BH Jr, Lord CF, Gebhardt MC, and Man-kin HJ. Fractures of allografts. Frequency, treatment, and end results. J Bone Joint Surg 1990; 72: 825–833.

    Google Scholar 

  26. Berrey BHJ, Lord CF, Gebhardt MC, and Mankin HJ. Fractures of allografts. Frequency, treatment, and end results. J Bone Joint Surg Am 1990; 72: 825–833.

    Google Scholar 

  27. Enneking WF and Mindell ER. Observations on massive retrieved human allografts. J Bone Joint Surg Am 1991; 73: 1123–1142.

    CAS  Google Scholar 

  28. Mankin HJ, Doppelt S, and Tomford W. Clinical experience with allograft implantation. The first ten years. Clin Orthop 1983; 174: 69–86.

    Google Scholar 

  29. Gebhardt MC, Flugstad DI, Springfield DS, and Mankin HJ. The use of bone allografts for limb salvage in high-grade extremity osteosarcoma. Clin Orthop 1991; 270: 181–196.

    Google Scholar 

  30. Jofe MH, Gebhardt MC, Tomford WW, and Man-kin HJ. Reconstruction for defects of the proximal part of the femur using allograft arthroplasty. J Bone Joint Surg Am 1988; 70: 507–516.

    CAS  Google Scholar 

  31. Johnson ME and Mankin HJ. Reconstructions after resections of tumors involving the proximal femur. Orthop Clin North Am 1991; 22: 87–103.

    CAS  Google Scholar 

  32. Power RA, Wood DJ, Tomford WW, and Mankin HJ. Revision osteoarticular allograft transplantation in weight-bearing joints. A clinical review. J Bone Joint Surg Br 1991; 73: 595–599.

    CAS  Google Scholar 

  33. Lord CF, Gebhardt MC, Tomford WW, and Mankin HJ. Infection in bone allografts. Incidence, nature, and treatment. J Bone Joint Surg Am 1988; 70: 369–376.

    CAS  Google Scholar 

  34. Tomford WW, Starkweather RJ, and Goldman MH. A study of the clinical incidence of infection in the use of banked allograft bone. J Bone Joint Surg Am 1981; 63: 244–248.

    CAS  Google Scholar 

  35. Tomford WW, Thongphasuk J, Mankin HJ, and Ferraro MJ. Frozen musculoskeletal allografts. A study of the clinical incidence and causes of infection associated with their use. J Bone Joint Surg Am 1990; 72: 1137–1143.

    CAS  Google Scholar 

  36. MacEwen W. Observations concerning transplantation of bone: illustrated by a case of inter-human osseous transplantation, whereby over two-thirds of the shaft of a humerus was restored. Proc R Soc Lond 1881; 32: 232–247.

    Article  Google Scholar 

  37. Bauer H. Über Knochentransplantation. Zentralbi Chir 1910; 37: 20–21.

    Google Scholar 

  38. Tuffier T. Sur les graffes osteo-articulaires. Bull Mem Soc Chir Paris 1913; 39: 1078–1096.

    Google Scholar 

  39. Tuffier T. Des graffes de cartilage et d’os humain dans les resections articulaires Bull Mem Soc Chir Paris 1911; 37: 278–286.

    Google Scholar 

  40. Carrel A. The preservation of tissues and its appli- cation in surgery. JAMA 1912; 59: 523–527.

    Article  Google Scholar 

  41. Albee FH. Discussion of Carrell A: the preservation of tissues and its application in surgery. DAMA 1912; 59: 527–528.

    Google Scholar 

  42. Albee FH. The fundamental principles involved in the use of the bone graft in surgery. Am J Med Sci 1915; 149: 313–325.

    Article  Google Scholar 

  43. Gallie WE. This history of a bone graft. Am J Orthop Surg 1914; 12: 201–212.

    Google Scholar 

  44. Gallie WE. The use of boiled bone in operative surgery. Am J Orthop Surg 1918; 16: 373–383.

    Google Scholar 

  45. Dobrowolskaja NA. On the regeneration of bone in its relation to the cultivation of bone tissue. Br J Surg 1916; 4: 332–335.

    Article  Google Scholar 

  46. Lewis WH and McCoy CC. The survival of cells after the death of the organism. Bull Johns Hopkins Hosp 1922; 33: 284–289.

    Google Scholar 

  47. Webster JP. Refrigerated skin grafts. Ann Surg 1944; 120: 431–448.

    CAS  Google Scholar 

  48. Haas SL. A study of the viability of bone after removal from the body. Arch Surg 1923; 7: 213226.

    Google Scholar 

  49. Haas SL. Further observations of the survival of bone after removal from the body. Arch Surg 1925; 10: 196–209.

    Article  Google Scholar 

  50. Bush LF and Garber CZ. The bone bank. JAMA 1948; 137: 588–594.

    Article  CAS  Google Scholar 

  51. Weaver JB. Experiences in the use of homogenous (bone-bank) bank. J Bone Joint Surg Am 1949; 31A: 778–792.

    Google Scholar 

  52. Hyatt GW. Fundamentals in the use and preservation of homogeneous bone. US Armed Forces Med J 1950; 1: 841–852.

    CAS  Google Scholar 

  53. Hyatt GW, Turner TC, Bassett CAL, Pate JW, and Sawyer PN. New methods for preserving bone, skin and blood vessels. Postgrad Med 1952; 12: 239–254.

    CAS  Google Scholar 

  54. Matthews DN. Storage of skin for autogenous grafts. Lancet 1945; 1: 775–776.

    Article  Google Scholar 

  55. Flosdorf EW and Hyatt GW. The preservation of bone grafts by freeze-drying, Surgery 1952; 31: 716–719.

    CAS  Google Scholar 

  56. Flosdorf EW. Freeze Drying, 1949; Reinhold, New York.

    Google Scholar 

  57. Young MF, Kerr JM, Ibaraki K, Heegaard AM, and Robey PG. Structure, expression, and regula-tion of the major noncollagenous matrix proteins of bone. Coin Orthop 1992; 281: 275–294.

    Google Scholar 

  58. Celeste AJ, Iannazzi JA, Taylor RC, Hewick RM, Rosen V, Wang EA, and Wozney JM. Identification of transforming growth factor beta family members present in bone-inductive protein purified from bovine bone. Proc Natl Acad Sci USA 1990; 87: 9843–9847.

    Article  CAS  Google Scholar 

  59. Centrella M, Horowitz MC, Wozney JM, and McCarthy TL. Transforming growth factor-beta gene family members and bone. End Rev 1994; 15: 27–39.

    CAS  Google Scholar 

  60. Wang EA, Rosen V, Cordes P, Hewick RM, Kriz MJ, Luxenberg DP, Sibley BS, and Wozney JM. Purification and characterization of other distinct bone-inducing factors. Proc Natl Acad Sci USA 1988; 85: 9484–9488.

    Article  CAS  Google Scholar 

  61. Wozney JM. The bone morphogenetic protein family and osteogenesis. Mol Reprod Dev 1992; 32: 160–167.

    Article  CAS  Google Scholar 

  62. Wozney JM, Rosen V, Byrne M, Celeste AJ, Moutsatsos I, and Wang EA. Growth factors influencing bone development. J Cell Sci 1990; 13 (Suppl): 149–156.

    CAS  Google Scholar 

  63. Wozney JM, Rosen V, Celeste Ai, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, and Wang EA. Novel regulators of bone formation: molecular clones and activities. Science 1988; 242: 1528 1534.

    Google Scholar 

  64. Chen J, Singh K, Mukherjee BB, and Sodek J. Developmental expression of osteopontin (OPN) mRNA in rat tissues: evidence for a role for OPN in bone formation and resorption. Matrix 1993; 13: 113–123.

    Article  CAS  Google Scholar 

  65. Dohi Y, Ohgushi H, Tabata S, Yoshikawa T, Dohi K, and Moriyama T. Osteogenesis associated with bone gla protein gene expression in diffusion chambers by bone marrow cells with demineralized bone matrix. J Bone Miner Res 1992; 7: 1173–1180.

    Article  CAS  Google Scholar 

  66. Heersche JN, Reimers SM, Wrana JL, Waye MM, and Gupta AK. Changes in expression of alpha 1 type 1 collagen and osteocalcin mRNA in osteoblasts and odontoblasts at different stages of maturity as shown by in situ hybridization. Proc Finn Dent Soc 1992; 88 (Suppl 1): 173–182.

    Google Scholar 

  67. Hinrichs B, Dreyer T, Battmann A, and Schulz A. Histomorphometry of active osteoblast surface labelled by antibodies against non-collagenous bone matrix proteins. Bone 1993; 14: 469–472.

    Article  CAS  Google Scholar 

  68. Lian JB, McKee MD, Todd AM, and Gerstenfeld LC. Induction of bone-related proteins, osteocalcin and osteopontin, and their matrix ultrastructural localization with development of chondro-cyte hypertrophy in vitro. J Cell Biochem 1993; 52: 206–219.

    Article  CAS  Google Scholar 

  69. McKee MD, Glimcher MJ, and Nanci A. High-resolution immunolocalization of osteopontin and osteocalcin in bone and cartilage during endochondral ossification in the chicken tibia. Anat Rec 1992; 234: 479–492.

    Article  CAS  Google Scholar 

  70. Glowacki J and Mulliken JB. Demineralized bone implants. Clin Plast Surg 1985; 12: 233–241.

    CAS  Google Scholar 

  71. Bos GD, Goldberg VM, Zika JM, Heiple KG, and Powell AE. Immune responses of rats to frozen bone allografts. J Bone Joint Surg Am 1983; 65: 239–246.

    CAS  Google Scholar 

  72. Daisaku H. Study on the immune response of mice receiving bone allografts. Nippon Seikeigeka Gakkai Zasshi 1988; 62: 71–83.

    CAS  Google Scholar 

  73. Friedlaender GE. Immune responses to osteochondral allografts. Current knowledge and future directions. Clin Orthop 1983; 174: 58–68.

    Google Scholar 

  74. Friedlaender GE, Strong DM, and Sell KW. Studies on the antigenicity of bone. I. Freeze-dried and deep-frozen bone allografts in rabbits. J Bone Joint Surg Am 1976; 58: 854–858.

    CAS  Google Scholar 

  75. Kaminska G, Kaminski M, and Komender A. Immunogenicity of fresh and preserved cortical and cancellous allogeneic bone grafts as tested by modified migration inhibition test in mice. Arch Immunol Ther Exp Warsz 1978; 26: 1053–1057.

    CAS  Google Scholar 

  76. Langer F, Czitrom A, Pritzker KP, and Gross AE. The immunogenicity of fresh and frozen allogeneic bone. J Bone Joint Surg Am 1975; 57: 216220.

    Google Scholar 

  77. Nisbet NW. Antigenicity of bone. J Bone Joint Surg Br 1977; 59: 263–266.

    CAS  Google Scholar 

  78. Oda Y, Sato H, Kazama T, Ishii T, Sato M, Shirano T, Kudo I, Iwase T, and Moro I. A preliminary report on bone transplantation. 1. An immunohistochemical study on the distortion and proportions of lymphocyte subsets in lymphoid organs of normal rats. J Nihon Univ Sch Dent 1987; 29: 303–313.

    Article  CAS  Google Scholar 

  79. Shigetomi M, Kawai S, and Fukumoto T. Studies of allotransplantation of bone using immunohistochemistry and radioimmunoassay in rats. Clin Orthop 1993; 292: 345–351.

    Google Scholar 

  80. Bos GD, Goldberg VM, Powell AE, Heiple KG, and Zika JM. The effect of histocompatibility matching on canine frozen bone allografts. J Bone Joint Surg Am 1983; 65: 89–96.

    CAS  Google Scholar 

  81. Musculo DL, Kawai S, and Ray RD. In vitro studies of transplantation antigens present on bone cells in the rat. J Bone Joint Surg Br 1977; 59: 342–348.

    Google Scholar 

  82. Stevenson S. The immune response to osteochon-dral allografts in dogs. J Bone Joint Surg Am 1987; 69: 573–582.

    CAS  Google Scholar 

  83. Czitrom AA, Langer F, McKee N, and Gross AE. Bone and cartilage allotransplantation. A review of 14 years of research and clinical studies. Clin Orthop 1986; 208: 141–145.

    Google Scholar 

  84. Esses S, Halloran P, Kliman M, and Langer F. Bone allografts in mice: determinants of immunogenicity and healing. Transplant Proc 1981; 13: 885–887.

    CAS  Google Scholar 

  85. Halloran PF, Lee E, Ziv I, and Langer F. Bone grafting in inbred mice: evidence for H-2K, H-2D, and non-H-2 antigens in bone. Transplant Proc 1979; 11: 1507–1509.

    CAS  Google Scholar 

  86. Halloran PF, Lee EH, Ziv I, Langer F, and Gross AE. Orthotopic bone transplantation in mice. II. Studies of the alloantibody response. Transplantation 1979; 27: 420–426.

    Article  CAS  Google Scholar 

  87. Halloran PF, Ziv I, Lee EH, Langer F, Pritzker KP, and Gross AE. Orthotopic bone transplantation in mice. I. Technique and assessment of healing. Transplantation 1979; 27: 414–419.

    Article  CAS  Google Scholar 

  88. Horowitz MC and Friedlaender GE. Induction of specific T-cell responsiveness to allogeneic bone. J Bone Joint Surg Am 1991; 73: 1157–1168.

    CAS  Google Scholar 

  89. Lipson RA, Halloran PF, Kawano H, and Langer F. A microsurgical model for vascularized bone and joint transplants in rats. Transplant Proc 1981; 13: 891–892.

    CAS  Google Scholar 

  90. Musculo DL, Kawai S, and Ray RD. Cellular and humoral immune response analysis of boneallografted rats. J Bone Joint Surg Am 1976; 58: 826–832.

    Google Scholar 

  91. Stevenson S, Li XQ, Davy DT, Klein L, and Goldberg VM. Critical biological determinants of incorporation of non-vascularized cortical bone grafts. Quantification of a complex process and structure. J Bone Joint Surg 1997; 79-A: 1–16.

    Article  CAS  Google Scholar 

  92. Stevenson S, Shaffer JW, and Goldberg VM. The humoral response to vascular and nonvascular allografts of bone. Clin Orthop 1996; 326: 86–95.

    Article  Google Scholar 

  93. Li XQ, Stevenson S, Klein L, Davy DT, Shaffer JW, and Goldberg VM. Differential patterns of incorporation and remodeling among various types of bone grafts. Acta Anat Basel 1991; 140: 236–244.

    Article  CAS  Google Scholar 

  94. Stevenson S, Shaffer JW, Davy D, Klein L, and Goldberg VM. Continuous high dose cyclosporin A maintains vascular potency and remodeling in canine fibular allografts. trans. Orthop Res Soc 39th Meeting 1993; p 537.

    Google Scholar 

  95. Weelter JF, Shaffer JW, Stevenson S, Davy DT, Field GA, Klein L, et al. Cyclosporin A and tissue antigen matching in bone transplantation. Fibular allografts studied in the dog. Acta Orthop Scand 1990; 61: 517–527.

    Article  Google Scholar 

  96. Zart DJ, Miya L, Wolff DA, Makley JT, and Stevenson S. The effects of cisplatin on the incorporation of fresh syngeneic and frozen cortical bone grafts. J Orthop Res 1993; 11: 240–249.

    Article  CAS  Google Scholar 

  97. Friedlaender GE and Horowitz MC. Immune responses to osteochondral allografts: Nature and significance. Orthopedics 1992; 15: 1171–1175.

    CAS  Google Scholar 

  98. Stevenson S, Hohn RB, and Templeton JW. Effects of tissue antigen matching on the healing of fresh cancellous bone allografts in dogs. Am J Vet Res 1983; 44: 201–206.

    CAS  Google Scholar 

  99. Stevenson S and Horowitz M. The response to bone allografts. J Bone Joint Surg Am 1992; 74: 939–950.

    CAS  Google Scholar 

  100. Stevenson S, Li XQ, and Martin B. The fate of cancellous and cortical bone after transplantation of fresh and frozen tissue-antigen-matched and mismatched osteochondral allografts in dogs. JBone Joint Surg Am 1991; 73: 1143–1156.

    CAS  Google Scholar 

  101. Langer F and Gross A. The clinical and immunological assessment of frozen bone allografts. Acta Med Pol 1978; 19: 271–275.

    CAS  Google Scholar 

  102. Friedlaender GE, Strong DM, and Sell KW. Studies on the antigenicity of bone. II. Donor-specific anti-HLA antibodies in human recipients of freeze-dried allografts. J Bone Joint Surg Am 1984; 66: 107–112.

    CAS  Google Scholar 

  103. Sepe WW, Bowers GM, Lawrence JJ, Friedlaender GE, and Koch RW. Clinical evaluation of freeze-dried bone allografts in periodontal osseous defects. Part II. J Periodontal 1978; 49: 9–14.

    CAS  Google Scholar 

  104. Rodrigo JJ, Fuller TC, and Mankin HJ. Cytotoxic HLA-antibodies in patients with bone and cartiage allografts. Trans Orthop Res Soc 1976; 1: 131.

    Google Scholar 

  105. Aho AJ, Eskola J, Ekfors T, Manner I, Kouri T, and Hollmen T. Immune responses and clinical outcome of massive human osteoarticular allo-grafts. Clin Orthop 1998; 346: 196–206.

    Google Scholar 

  106. Lewandrowski KU, Ekkernkamp A, Tomford WW, and Muhr G. T-Zell Aktivierung nach allogener Knochentransplantation. Langenbecks Arch Chir Suppl II 1996; 1248.

    Google Scholar 

  107. Lewandrowski KU, Tomford WW, Springfield DS, and Mankin HJ. MHC-Restriktion zytotoxischer Antikörper nach Transplantation allogener Knochentransplantate. Langenbecks Arch Chirurgie Suppl 1996; 1: 157–162.

    Google Scholar 

  108. Muscolo DL, Caletti E, Schajowicz F, Araujo ES, and Makino A. Tissue-typing in human massive allografts of frozen bone. J Bone Joint Surg Am 1987; 69: 583–595.

    CAS  Google Scholar 

  109. Muscolo DL, Ayerza MA, Calabrese ME, Redal MA, and Santini Araujo E. Human leukocyte antigen matching, radiographic score, and histologic findings in massive frozen bone allografts. Clin Orthop 1996; 326: 115–126.

    Article  Google Scholar 

  110. Strong DM, Friedlaender GE, Tomford WW, Springfield DS, Shives TC, Burchardt H, Enne-king WF, and Mankin HJ. Immunologic responses in human recipients of osseous and osteochondral allografts. Clinical Orthop 1996; 326: 107–114.

    Article  Google Scholar 

  111. Tomford WW, Schachar NS, Fuller TC, Henry WB, and Mankin HJ. Immunogenicity of frozen osteoarticular allografts. Transplant Proc 1981; 13: 888–890.

    CAS  Google Scholar 

  112. Tomford WW, Springfield DS, Mankin HJ, Hung HH, Lewandrowski KU, and Fuller TC. Immunology of large frozen bone allograft transplantation in humans. Antibody and T-Lymphocyte response and their effects on results. Trans Orthop Res Soc 1994; 39: 102.

    Google Scholar 

  113. Bernick S, Paule W, Ertl D, Nishimoto SK, and Nimni ME. Cellular events associated with the induction of bone by demineralized bone. J Orthop Res 1989; 7: 1–11.

    Article  CAS  Google Scholar 

  114. Gendler E. Perforated demineralized bone matrix: a new form of osteoinductive biomaterial. J Biomed Mater Res 1986; 20: 687–697.

    Article  CAS  Google Scholar 

  115. Gendler E. 1990; US Patent 4932973.

    Google Scholar 

  116. O’Donnell RJ, Deutsch TF, Flotte TJ, Lorente CA, Tomford WW, Mankin HJ, and Schomacker KT. Effect of Er:YAG laser holes on osteoinduction in demineralized rat calvarial allografts. J Orthop Res 1996; 14: 108–113.

    Article  Google Scholar 

  117. Scanlon CE. Analysis of laser-textured, demineralized bone allografts 1991; Master’s thesis. Northwestern University, Biomedical Engineering Department,Chicago.

    Google Scholar 

  118. Sires BS. 1992; US patent 5112354.

    Google Scholar 

  119. Nuss RC, Fabian RL, Sarkar R, and Puliafito CA. Infrared laser bone ablation. Lasers Surg Med 1988; 8: 381–391.

    Article  CAS  Google Scholar 

  120. Walsh JT Jr, Flotte Ti, and Deutsch TF. Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage. Lasers Surg Med 1989; 9: 314–326.

    Article  Google Scholar 

  121. Guo MZ, Xia ZS, and Lin LB. The mechanical and biological properties of demineralised cortical bone allografts in animals. J Bone Joint Surg Br 1991; 73: 791–794.

    CAS  Google Scholar 

  122. Hosny M and Sharawy M. Osteoinduction in rhesus monkeys using demineralized bone powder allografts. J Oral Maxillofac Surg 1985; 43: 837–844.

    Article  CAS  Google Scholar 

  123. Hosny M and Sharawy M. Osteoinduction in young and old rats using demineralized bone powder allografts. J Oral Maxillofac Surg 1985; 43: 925–931.

    Article  CAS  Google Scholar 

  124. Narang R, Wells H, and Laskin DM. Experimental osteogenesis with demineralized allogeneic bone matrix in extraskeletal sites. J Oral Maxillofac Surg 1982; 40: 133–141.

    Article  CAS  Google Scholar 

  125. Vandersteenhoven JJ and Spector M. Histological investigation of bone induction by demineralized allogeneic bone matrix: a natural biomaterial for osseous reconstruction. JBiomed Mater Res 1983; 17: 1003–1014.

    Article  CAS  Google Scholar 

  126. Mulliken JB, Glowacki J, Kaban LB, Folkman J, and Murray JE. Use of demineralized allogeneic bone implants for the correction of maxillocraniofacial deformities. Ann Surg 1981; 194: 366–372.

    Article  CAS  Google Scholar 

  127. Salyer KE, Gendler E, Menendez JL, Simon TR, Kelly KM, and Bardach J. Demineralized perforated bone implants in craniofacial surgery. J Cranio Surg 1992; 3: 55–62.

    Article  CAS  Google Scholar 

  128. Sonis ST, Kaban LB, and Glowacki J. Clinical trial of demineralized bone powder in the treatment of periodontal defects. J Oral Med 1983; 38: 117–122.

    CAS  Google Scholar 

  129. Birkedal-Hansen H. Kinetics of acid demineralization in histologic technique. J Histochem Cytochem 1974; 22: 434 441.

    Google Scholar 

  130. Birkedal-Hansen H. Kinetics of acid demineralization in histologic technique. J Histochem Cytochem 1974; 22: 434–441.

    Article  CAS  Google Scholar 

  131. Lewandrowski KU, Venugopalan V, Tomford WW, Schomacker KT, Mankin HJ, and Deutsch TF. Kinetics of cortical bone demineralization. A new method for modifying cortical bone allo-grafts. J Biomed Mater Res 1996; 31: 365–372.

    Article  CAS  Google Scholar 

  132. Levenspiel O. Chemical Reaction Engineering 1972; Wiley, New York.

    Google Scholar 

  133. Lewandrowski KU, Tomford WW, Michaud N, Flotte TF, Schomacker KT, and Deutsch TF. Electron microscopic studies on the process of cortical bone demineralization. Calcif Tissue Int 1997; 61: 294–297.

    Article  CAS  Google Scholar 

  134. Lewandrowski KU, Tomford WW, Yeadon A, Deutsch TF, Mankin HJ, and Uhthoff HK. Flexural rigidity in partially demineralized diaphyseal bone grafts. Clin Orthop 1995; 317: 254–262.

    Google Scholar 

  135. Makarewicz PJ, Harasta L, and Webb SL. Kinetics of acid diffusion and demineralization of bone. J Photogr Sci 1980; 22: 148–159.

    Google Scholar 

  136. Lewandrowski KU, Ekkernkamp A, Muhr G, and Tomford WW. Osteoinduction in cortical bone grafts by controlled partial demineralization and laser-perforation. Trans Eur Surg Res Soc 1996; 1: 5.

    Google Scholar 

  137. Lewandrowski KU, Tomford WW, Mankin HJ, Schomacker KT, and Deutsch TF. Enhancement of incorporation of cortical bone grafts by partial demienralization and laser-perforation. Trans Orthop Res Soc 1995; 1: 87.

    Google Scholar 

  138. Lewandrowski KU, Schollmeier G, Uhthoff HK, and Tomford WW. Mechanical properties of laser-perforated and partially demineralized diaphyseal bone allografts. Clin Orthop 1998; 353: 238–246.

    Article  Google Scholar 

  139. Lewandrowski KU, Tomford WW, Schomacker KT, Deutsch TF, and Mankin HJ. Enhancement of incorporation of cortical bone grafts by controlled partial demineralization and laser-perforation. J Orthop Res 1997; 15: 748–756.

    Article  CAS  Google Scholar 

  140. Lewandrowski KU, Schollmeier G, Ekkernkamp A, Grosse-Wilde P, Rebmann V, and Tomford WW. Immune response to laser-perforated and partially demineralized cortical bone allografts. 1998; in preparation.

    Google Scholar 

  141. Lewandrowski KU, Schollmeier G, Ekkernkamp A, Muhr G, Uhthoff HK, and Tomford WW. Mechanical evaluation of incorporation of laser-perforated and partially demineralized cortical bone allografts. 1998; in preparation.

    Google Scholar 

  142. Lewandrowski KU, Schollmeier G, Ekkernkamp A, Uhthoff HK, Mankin HJ, and Tomford WW. Modification of cortical bone allografts by partial demineralization and laser perforation to enhance incorporation: a radiographic, histological and biomechanical study. Trans Orthop Res Soc 1998; 44: 1010.

    Google Scholar 

  143. Kubens BS, Arnett KL, Adams EJ, Parham P, and Grosse-Wilde H. Definition of a new HLA-B7 subtype (B0704) by isoelectric focusing, family studies and DNA sequence analysis. Tissue Antigens 1995; 45: 322–327.

    Article  CAS  Google Scholar 

  144. Kubens BS, Krumbacher K, and Grosse-Wilde H. Biochemical definition of DLA-A and DLA-B gene products by one-dimensional isoelectric focusing and immunoblotting. Ear JImmunogenet 1995; 22: 199–207.

    Article  CAS  Google Scholar 

  145. Rebmann V, Kubens BS, Ferencik S, and Grosse-Wilde H. Biochemical analysis of HLA-DP gene products by isoelectric focusing and comparison with cellular and molecular genetic typing results. Exp Clin Immunogenet 1995; 12: 36–47.

    CAS  Google Scholar 

  146. Rodrigo JJ, Heiden E, Hegyes M, and Sharkey NA. Immune response by irrigating subchondral bone with cytotoxic agents. Clin Orthop 1996; 326: 96–106.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lewandrowski, KU., Schollmeier, G., Ekkernkamp, A., Mankin, H.J., Uhthoff, H.K., Tomford, W.W. (2000). Enhancing Cortical Allograft Incorporation Processing by Partial Demineralization and Laser Perforation. In: Wise, D.L., Trantolo, D.J., Lewandrowski, KU., Gresser, J.D., Cattaneo, M.V., Yaszemski, M.J. (eds) Biomaterials Engineering and Devices: Human Applications . Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-197-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-197-8_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-227-8

  • Online ISBN: 978-1-59259-197-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics