Skip to main content

Osteointegration and Dimensional Stability of Poly(d,l—Lactide-Co-Glycolide) Implants Reinforced with Poly(Propylene Glycol-Co-Fumaric Acid)

Histomorphometric Evaluation of Metaphyseal Bone Remodeling in Rats

  • Chapter
Biomaterials Engineering and Devices: Human Applications

Abstract

Internal fixation devices (IFDs), fabricated from biodegradable (resorbable) polymers, have several advantages, compared to metallic devices: They do not corrode; they may be constructed with moduli closer to that of normal bone than metal devices, and, thus, as a corollary, avoid stress shielding; and finally, resorbability obviates the need of a second surgical procedure for removal. However, to ensure dimensional stability during degradation, and to match modulus and strength to that of bone, it is necessary to introduce a reinforcing structure for those applications to plate fixation. One approach is to use as the major structural element a poly(d,l-lactide-co-glycolide) (PLGA), which is dispersed within a three-dimensional (3-D) network, or scaffold, of poly(propylene fumarate) (PPF) crosslinked with a vinyl monomer, such as vinyl pyrrolidone (VP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cheal EJ, Mansmann KA, DiGioia AM 3rd, Hayes WC, and Perren SM. Role of interfragmentary strain in fracture healing: bovine model of a healing osteotomy. J Orthop Res 1991; 9: 131–142.

    Article  CAS  Google Scholar 

  2. Cordey J, Perren SM, and Steinmann S. Stress protection in plate osteosynthesis: myth or reality? Helv Chir Acta 1989; 56: 235–259.

    CAS  Google Scholar 

  3. Matter P and Burch HB. Clinical experience with titanium implants, especially with the limited contact dynamic compression plate system. Arch Orthop Trauma Surg 1990; 109: 311–313.

    Article  CAS  Google Scholar 

  4. Claes L, Augat P, Sugar G, and Wilke HJ. “Influence of size and stability of the osteotomy gap on the success of fracture healing”, J Orthop Res 1997; 15: 577–584.

    Article  CAS  Google Scholar 

  5. Bednar DA, Grandwilewski W. “Complications of forearm-plate removal”, Can J Surg 1992; 34: 428–431.

    Google Scholar 

  6. Ferguson SJ, Wyss UP, Pichora DR. “Finite element stress analysis of a hybrid fracture fixation plate”, Med Eng Phys 1996; 18: 241–250.

    Article  CAS  Google Scholar 

  7. Woo SL, Lothringer LS, Akeson WH, Coutts RC, Woo YK, Simon BR, and Gomez MA. “Less rigid internal fixation plates: historical perspectives and new concepts”, J Orthop Res 1984; 1: 431–449.

    Article  CAS  Google Scholar 

  8. Peltoniemi HH, Ahovuo J, Tulamo RM, Tormala P, and Waris T. “Biodegradable and titanium plating in experimental craniotomies: a radiographic follow-up”, J Craniofac Surg 1997; 8: 446–451.

    Article  CAS  Google Scholar 

  9. Peltoniemi HH, Tulamo RM, Pihlajamaki HK, Kallionen M, Pohjonen T, Tormala P, Rokkanen PU, and Warris T. “Consolidation of craniotomy lines after resorbable polylactide and titanium plating: a comparative experimental study in sheep”, Plast Reconstr Surg 1998; 101: 123–133.

    Article  CAS  Google Scholar 

  10. Suuronen R, Manninen MJ, Pohjonen T, Laitinen 0, and Lindqvist C. “Mandibular osteotomy fixed with biodegradable plates and screws: an animal study”, Br J Oral Maxillofac Surg 1997; 35: 341–348.

    Article  CAS  Google Scholar 

  11. Getter L, Cutright DE, Bhaskar SN, and Augsburg JK. Biodegradable intraosseous appliance in the treatment of mandibular fractures“, J Oral Surg 1972; 30: 344.

    CAS  Google Scholar 

  12. Hollinger JO and Battistone GC. “Biodegradable bone repair materials: synthetic polymers and ceramics”, Clin Orthop Related Res 1986; 207: 290–305.

    CAS  Google Scholar 

  13. Bostman OM. “Current concepts review: absorbable implants for the fixation of fractures”, J Joint Bone Surg 1991; 73: 148–153.

    CAS  Google Scholar 

  14. Bos RRM, Rozema FR, Boering G, Nijenhuis AJ, Pennings AJ, and Verwey AB. “Bioabsorbable plates and screws for internal fixation of mandibular fractures: a study in six dogs”, IntJOral Maxillofac Surg 1989; 18: 365–369.

    Article  CAS  Google Scholar 

  15. Tortorelli, unpublished work.

    Google Scholar 

  16. Parsons JR, Alexander H, Corcoran SF, Karoluk JM, and Weiss AB. “Development of a variable stiffness absorbable bone plate”, Proceedings of the 7th Northeast Bioengineering Conference 1979; Pergamon, New York, p. 162.

    Google Scholar 

  17. Skirving AP, Day R, MacDonald W, and McLaren R. “Carbon fiber reinforced plastic (CFRP) plates versus stainless steel dynamic compression plates in the treatment of fractures of the Tibiae in dogs”, Clin Orthop Related Res 1987; 224: 117–124.

    Google Scholar 

  18. Christel P, Chabot F, Leary JL, Morin C, and Vert M. Biodegradable composites for internal fixation, in Biomaterials 1982; (Winter GD, Gibbon DF, and Plenk H, eds), Wiley, New York, pp 271–280.

    Google Scholar 

  19. Tormala P, Vasenius J, Vainionpaa S, Laiho J, Pohjonen T, and Rokkanen P. “Ultra-high-strength absorbable self-reinforced polyglycolide (SR-PGA) composite rods for internal fixation of bone fractures: in vitro and in vivo study”, J Biomed Mater Res 1991; 25: 1–22.

    Article  CAS  Google Scholar 

  20. Tormala P. “Biodegradable self-reinforced composite materials: manufacturing structure and mechanical properties”, Clin Mater 1992; 10: 29–34.

    Article  CAS  Google Scholar 

  21. Tormala P. “Biodegradable self-reinforced absorbable polymeric composites for applications in different disciplines of surgery”, Clin Mater 1993; 13: 35–40.

    Article  CAS  Google Scholar 

  22. Weiler W and Gogolewski S. “Enhancement of the mechanical properties of polylactides by solid-state extrusion”, Biomaterials 1996; 17: 529–535.

    Article  CAS  Google Scholar 

  23. Heppenstal RB. Fracture healing, in Basic Orthopaedic Biomechanics 1991; (Mow VC and Hayes WC, eds), Raven, New York, pp. 35–64.

    Google Scholar 

  24. Adams JC. Outline of Fractures: Including Joint Injuries 1978; Churchill Livingston, New York.

    Google Scholar 

  25. Fung YC. Biomechanics: Mechanical Properties of Living Tissues 1981; Springer-Verlag, New York, pp. 383–389.

    Google Scholar 

  26. Gresser JD, Hsu SH, Nagaoka H, Lyons CM, Nieratko DP, Wise DL, Barabino GA, and Trantolo DJ. “Analysis of a vinyl pyrrolidone/poly(propylene fumarate) resorbable bone cement”, J Biomed Mater Res 1995; 29: 1241–1247.

    Article  CAS  Google Scholar 

  27. Gerhart TN, Renshaw AA, Miller RL, Noecker RJ, and Hayes WC. “In vivo histologic and biomechanical characterization of a biodegradable particulate composite bone cement”, J Biomed Mater Res 1989; 23: 1–16.

    Article  CAS  Google Scholar 

  28. Yaszemski MJ, Payne RG, Hayes WC, Langer R, and Mikos AG. “In vitro degradation of a poly(propylene fumarate) based composite material”, Biomaterials, 1996; 17: 2127–2130.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gresser, J.D., Lewandrowski, KU., Trantolo, D.J., Wise, D.L. (2000). Osteointegration and Dimensional Stability of Poly(d,l—Lactide-Co-Glycolide) Implants Reinforced with Poly(Propylene Glycol-Co-Fumaric Acid). In: Wise, D.L., Trantolo, D.J., Lewandrowski, KU., Gresser, J.D., Cattaneo, M.V., Yaszemski, M.J. (eds) Biomaterials Engineering and Devices: Human Applications . Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-197-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-197-8_16

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-227-8

  • Online ISBN: 978-1-59259-197-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics