Skip to main content

Mechanics of Hydrocephalus

  • Chapter
  • First Online:
Mathematical Modelling and Biomechanics of the Brain

Part of the book series: Fields Institute Monographs ((FIM,volume 37))

  • 678 Accesses

Abstract

Hydrocephalus is a serious neurological disorder which was first described by Hippocrates (460–370 BC) as water on the brain. The disorder is characterized by an abnormal accumulation of cerebrospinal fluid in the brain’s ventricles and in pediatric cases often by an increased intracranial pressure. Currently, the general medical community consensus is that hydrocephalus is a heterogeneous group of disorders, rather than a single disease entity, and therefore the pathophysiology of hydrocephalus is much more complex and obscure than the clinical or radiological presentation of hydrocephalus (going beyond simply ventricular dilatation). Together with gross macroscopic changes, hydrocephalus results in significant changes to the brain tissue, not only of its morphology, but also of its dynamics, biochemistry, metabolism, and maturation. Successful treatment does not always reverse the injuries caused by hydrocephalus—early therapeutic intervention plays a crucial role in determining the reversibility of lesions, and, hence, the overall outcome. Realistic biomechanical models of hydrocephalus could advance our understanding about the pathophysiology of hydrocephalus and play an important role in predicting the evolution of hydrocephalus as well as the outcome of its treatment. In this chapter we will provide some basic facts about brain anatomy and mechanisms involved in the onset and evolution of hydrocephalus, and review some of the mathematical models of hydrocephalus currently in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By definition, the Poisson’s ratio is the negative ratio of the transverse and axial strains. The Poisson’s ratio of an incompressible material is 1/2.

  2. 2.

    According to this definition, the spatial point used in mixture theories does not correspond to a material point but rather to a very small region around a material point.

  3. 3.

    The pore fluid pressure introduced by Eq. (3.12) is by definition the product between the fluid pressure and the porosity (the volume fraction of the fluid phase over the constant total volume of the mixure).

  4. 4.

    Magnetic resonance elastography is a noninvasive technique facilitated by a magnetic resonance imaging scanner that is used to estimate viscoelastic properties of human internal organs based on their response to applied stress.

  5. 5.

    The Dirichlet boundary condition equates the pore fluid pressure to a given ventricular CSF pressure, while the Neumann boundary condition the radial variation of the fluid pressure is equal to the radial velocity of CSF entering the brain tissue from the ventricles.

  6. 6.

    The inseparability of length scales as well as the very dynamic nature of numerous components and their assembles could support modeling the brain tissue as a multi-phasic mixture.

  7. 7.

    In [31], the authors propose to use the genetic algorithm (an adaptive search algorithm based on the concepts of natural selection and genetics) to simultaneously fit ramping and relaxation experimental data to Fung’s quasi-linear viscoelastic model to obtain the mechanical parameters. The robustness of the genetic algorithm is shown on experimental data of ligaments. However, a similar set of experimental data for the brain parenchyma that will allow the use of this algorithm to find more accurate parameters for Fung’s quasi-linear viscoelastic model has not been reported to date.

References

  1. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941).

    Article  MATH  Google Scholar 

  2. Bowen, R. M. Theory of mixtures. in A. C. Eringen (Ed.), Continuum Physics (Vol. III). Waltham: Academic Press. (1976).

    Google Scholar 

  3. Brunelle, F. Modern imaging of pediatric hydrocephalus. Pediatric Hydrocephalus, pp. 79–94 (2004).

    Chapter  Google Scholar 

  4. Centers for disease control and prevention, national center for health statistics. See http://www.cdc.gov/nchs/releases/news/lifeex.htm

  5. Choi, J.U., Kim, D.S., Kim, S.H. Endoscopic surgery for obstructive hydrocephalus. Yonsei Medical Journal, 40(6), 600–607 (1999).

    Article  Google Scholar 

  6. Chou, C.Y., Liu, J.H., Wang, S.M., Yang, Y.F., Lin, H.H., Liu, Y.L., Huang, C.C. Hyponatraemia in patients with normal pressure hydrocephalus. Int J Clin Pract. 63(3), 457–461 (2009).

    Article  Google Scholar 

  7. Ciurea, A.V., Coman, T.C., Mircea, D. Postinfectious hydrocephalus in children. Pediatric Hydrocephalus, pp. 201–218 (2004).

    Chapter  Google Scholar 

  8. Clayton, E.H., Garbow, J.R., Bayly, P.V. Frequency-dependent viscoelastic parameters of mouse brain tissue estimated by MR elastography. Phys. Med. Biol. 56, 2391–2406 (2011).

    Article  Google Scholar 

  9. Czosnyka, M., Czosnyka, Z., Momjian, S., Pickard, J. D. Cerebrospinal fluid dynamics. Topical Review. Physiol. Meas. 25, R51–R76 (2004).

    Article  Google Scholar 

  10. Da Silva, M.C. Pathophysiology of hydrocephalus. Pediatric Hydrocephalus, pp. 65–78 (2004).

    Google Scholar 

  11. Davis, G.B., Kohandel, M., Sivaloganathan, S., Tenti, G. The constitutive properties of the brain parenchyma Part 2. Fractional derivative approach. Med. Eng. Phys. 28(5), 455–459 (2006).

    Google Scholar 

  12. Di Rocco, C., Massimi, L., Tamburrini, G. Shunts vs. endoscopic third ventriculostomy in infants: Are there different types and/or rates of complications? A review. Childs. Nerv. Syst. 22, 1573–1589 (2006).

    Google Scholar 

  13. Drapaca, C.S., Tenti, G., Rohlf, K., Sivaloganathan, S. A quasilinear viscoelastic constitutive equation for the brain: application to hydrocephalus. J. Elasticity, 85(1), 65–83 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  14. Drapaca, C.S., Fritz, J.S. A mechano-electro-chemical model of brain neuro-mechanics: application to normal pressure hydrocephalus, Int. J. Numer. Anal. Model. B, 3(1), 82–93 (2012).

    MathSciNet  MATH  Google Scholar 

  15. Drapaca, C.S., Kauffman, J. A study of brain biomechanics using Hamiltons principle: application to hydrocephalus, Interdisciplinary Topics in Applied Mathematics, Modeling and Computational Science, Springer Proceedings in Mathematics & Statistics, 117, 191–197 (2015).

    Google Scholar 

  16. Dutta-Roy, T., Wittek, A., Miller, K. Biomechanical modelling of normal pressure hydrocephalus. J. Biomech. 41, 2263–2271 (2008).

    Article  Google Scholar 

  17. Eisenträager, A., Sobey, I. Multi-fluid poroelastic modelling of CSF flow through the brain. Poromechanics V, ASCE 2013, 2148–2157 (2013).

    Article  Google Scholar 

  18. Elkin, B.S., Shalik, M.A., Morrison III, B. Fixed negative change and the Donnan effect: a description of the driving forces associated with brain tissue swelling and oedema, Phil. Trans. R. Soc. A 368. 585–603 (2010).

    Article  Google Scholar 

  19. Fattahi, N., Arani, A., Meyer, F., Manduca, A., Glaser, K., Senjem, M.L., Ehman, R.L., Huston, J. MR elastography demonstrates increased brain stiffness in normal pressure hydrocephalus. AJNR Am J Neuroradiol. http://dx.doi.org/10.3174/ajnr.A4560 (2015).

  20. Gefen, A., Margulies, S.S. Are in vivo and in situ brain tissues mechanically similar? J. Biomech. 37, 1339–1352 (2004).

    Article  Google Scholar 

  21. Gjerris, F., Borgesen, S.E. Current concepts of measurement of cerebrospinal absorption and biomechanics of hydrocephalus. Adv. Tech. Stand. Neurosurg. 19, 145–177 (1992).

    Article  Google Scholar 

  22. Guo, J., Hirsch, S., Fehlner, A., Papazoglou, S., Scheel, M., Braun, J., Sack, I. Towards an elastographic atlas of brain anatomy. Oberai AA, ed. PLoS ONE. 8(8): e71807. http://dx.doi.org/10.1371/journal.pone.0071807 (2013).

    Article  Google Scholar 

  23. Hakim, S., Venegas, J., Burton, J. The physics of the cranial cavity, hydrocephalus and normal pressure hydrocephalus: mechanical interpretation and mathematical model. Surg. Neurol. 5, 187–210 (1976).

    Google Scholar 

  24. Hellwig, D., Grotenhuis, J.A., Tirakotai, W., Riegel, T., Schulte, D.M., Bauer, B.L., Bertalanffy, H. Endoscopic third ventriculostomy for obstructive hydrocephalus. Neurosurg. Rev. 28, 1–34 (2005).

    Article  Google Scholar 

  25. Hydrocephalus statistics. See http://www.ghrforg.org/faq.htm

  26. Kaczmarek, M., Subramaniam, R., Neff, S. The hydromechanics of hydrocephalus: steady-state solutions for cylindrical geometry. Bull. Math. Biol., 59(2), 295–323 (1997).

    Article  MATH  Google Scholar 

  27. Kauffman, J., Drapaca, C.S. A fractional pressure-volume model of cerebrospinal fluid dynamics in hydrocephalus. Mechanics of Biological Systems and Materials, 4, 179–184 (2013).

    Google Scholar 

  28. Kellie, G. Appearances observed in the dissection of two individuals; death from cold and congestion of the brain. Trans. Med-Chir. Soc. Edinburgh, pp. 1–84 (1824).

    Google Scholar 

  29. Kim, H., Min, B.-K., Park, D.-H., Hawi, S., Kim, B.-J., Czosnyka, Z., Czosnyka, M., Sutcliffe, M.P.F., Kim, D.-J. Porohyperelastic anatomical models for hydrocephalus and idiopathic intracranial hypertension. J. Neurosurg. 122, 1330–1340 (2015).

    Article  Google Scholar 

  30. Kohandel, M., Sivaloganathan, S., Tenti, G., Drake, J.M. The constitutive properties of the brain parenchyma Part 1. Strain energy approach. Med. Eng. Phys. 28(5), 449–454 (2005).

    Article  Google Scholar 

  31. Kohandel, M., Sivaloganathan, S., Tenti, G. Estimation of the quasi-linear viscoelastic parameters using a genetic algorithm. Math. Comput. Model. 47, 266–270 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  32. Kruse, S.A., Rose, G.H., Glaser, K.J., Manduca, A., Felmlee, J.P., Jack Jr., C.R., Ehman, R.L. Magnetic resonance elastography of the brain. NeuroImage, 39, 231–237 (2008).

    Article  Google Scholar 

  33. Lefever, J.A., Garcia, J.J., Smith, J.H. A patient-specific, finite element model for noncommunicating hydrocephalus capable of large deformation. J. Biomech. 46, 1447–1453 (2013).

    Article  Google Scholar 

  34. Levine, D.N. The pathogenesis of normal pressure hydrocephalus: a theoretical analysis, Bull. Math. Biol. 61, 875–916 (1999).

    Article  MATH  Google Scholar 

  35. Levine, D.N. Intracranial pressure and ventricular expansion in hydrocephalus: have we been asking the wrong question? J. Neurol. Sci. 269, 1–11 (2008).

    Article  Google Scholar 

  36. Li, L., Padhi, A., Ranjeva, S.L., Donaldson, S.C., Warf, B.C., Mugamba, J., Johnson, D., Opio, Z., Jayarao, B., Kapur, V., Poss, M., Schiff, S.J. Association of bacteria with hydrocephalus in Ugandan infants. Clinical article, J. Neurosurg. Pediatrics 7, 73–87 (2011).

    Article  Google Scholar 

  37. Linninger, A.A., Tsakiris, C., Zhu, D.C., Xenos, M., Roycewicz, P., Danziger, Z., Penn, R. Pulsatile cerebrospinal fluid dynamics in the human brain. IEEE Trans. Biomed. Eng. 52 (4), 557–565 (2005).

    Article  Google Scholar 

  38. Linninger, A.A., Xenos, M., Zhu, D.C., Somayaji, M.R., Kondapalli, S., Penn, R.D. Cerebrospinal fluid flow in the normal and hydrocephalic human brain. IEEE Trans. Biomed. Eng. 54(2), 291–302 (2007).

    Article  Google Scholar 

  39. Linninger, A.A., Xenos, M., Sweetman, B., Ponkshe, S., Guo, X., Penn, R. A mathematical model of blood, cerebrospinal fluid and brain dynamics. J. Math. Biol. 59, 729–759 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  40. Mandell, J., Neuberger, T., Drapaca, C., Webb, A., Schiff, S. The dynamics of brain and cerebrospinal fluid growth in normal versus hydrocephalic mice. J. Neurosurg. Pediatrics 6, 1–10 (2010).

    Article  Google Scholar 

  41. Margulies,S.S., Thibault, K. L. Infant skull and suture properties: measurements and implications for mechanisms of pediatric brain injury. J. Biomech. Eng., 122, 364–371 (2000).

    Article  Google Scholar 

  42. Marmarou, A., Shulman, K., LaMorgese, J. Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J. Neurosurg. 43, 523–534 (1975).

    Article  Google Scholar 

  43. Marmarou, A., Shulman, K., Rosende, R.M. A nonlinear analysis of the cerebrospinal fluid system and intracranial pressure dynamics. J. Neurosurg. 48, 332–344 (1978).

    Article  Google Scholar 

  44. Mendis, K., Stalnaker, R., Advani, S. A constitutive relationship for large deformation finite element modeling of brain tissue. J. Biomech. Eng.Trans. ASME, 117, 279–285 (1995).

    Article  Google Scholar 

  45. Milhorat, T.H. Pediatric Neurosurgery. Contemporary Neurology Series 16 (1978).

    Google Scholar 

  46. Miller, K. Constitutive model of brain tissue suitable for finite element analysis of surgical procedures. J. Biomech. 32, 531–537 (1999).

    Article  Google Scholar 

  47. Miller, K., Chinzei, K. Constitutive modeling of brain tissue: experiment and theory. J.Biomech. 30, 1115–1121 (1997).

    Article  Google Scholar 

  48. Monro, A. Observations on Structure and Functions of the Nervous System. Edinburgh: Creech and Johnson (1783).

    Google Scholar 

  49. Murphy, V.A., Johanson, C.E. Alterations of sodium transport by the choroid plexus with amiloride, Biochimica et Biophysica Acta 979, 187–192 (1989).

    Article  Google Scholar 

  50. Nagashima, T., Tamaki, N., Matsumoto, S., Horwitz, B., Seguchi, Y. Biomechanics of hydrocephalus: a new theoretical model. Neurosurg, 21 (6), 898–904 (1987).

    Article  Google Scholar 

  51. Nagra, G., Koh, L., Aubert, I., Kim, M., Johnston, M. Intraventricular injection of antibodies to β1-integrins generates pressure gradients in the brain favoring hydrocephalus development in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297(5), R1312–1321 (2009).

    Article  Google Scholar 

  52. Nedergaard, M., Goldman, S.A. Brain drain. Sci. Am. 314(3), 44–49 (2016).

    Article  Google Scholar 

  53. Netter, F.H. The CIBA Collection of Medical Illustrations: Nervous System. CIBA (1972).

    Google Scholar 

  54. Nolte, J. The Human Brain: An Introduction to its Functional Anatomy. Mosby-Year Book, Inc. (1993).

    Google Scholar 

  55. Peña, A., Harris, N., Bolton, M., Czosnyka, M., Pickard, J. Communicating hydrocephalus: the biomechanics of progressive ventricular enlargement revisited. Acta Neurochir. 81, 59–63 (2002).

    Google Scholar 

  56. Penn, R.D., Lee, M.C., Linninger, A.A., Miesel, K., Lu, S.N., Stylos, L. Pressure gradients in the brain in an experimental model of hydrocephalus, J. Neurosurg. 102, 1069–1075 (2005).

    Article  Google Scholar 

  57. Raman, K. A stochastic differential equation analysis of cerebrospinal fluid dynamics. Fluids and Barriers of the CNS, 8(9), 1–10 (2011).

    Google Scholar 

  58. Relkin, N., Marmarou, A., Klinge, P., Bergsneider, M., Black, P. Diagnosing idiopathicnormal pressure hydrocephalus. Neurosurgery Online, 57(Suppl. 3), S4–S16 (2005).

    Google Scholar 

  59. Redzic, Z. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids and Barriers of the CNS, 8(3), 1–25 (2011).

    Google Scholar 

  60. Rivest, S. Regulation of innate immune responses in the brain. Nature Reviews Immunology, 9, 429–439 (2009).

    Article  Google Scholar 

  61. Robin, C. Recherches sur quelques particularités de la structure des capillaires de lencephale. J. Physiol. Homme. Anim. 2, 537–548 (1859).

    Google Scholar 

  62. Sack, I., Beierbach, B., Wuerfel, J., Klatt, D. Hamhaber, U., Papazoglou, S., Martus, P., Braun, J. The impact of aging and gender on brain viscoelasticity, Neuroimage, 46(3), 652–657 (2009).

    Article  Google Scholar 

  63. Schiff, S.J., Ranjeva, S.L., Sauer, T.D., Warf, B.C. Rainfall drives hydrocephalus in East Africa, Journal of Neurosurgery: Pediatrics, 10(3), 161–167 (2012).

    Google Scholar 

  64. Siegel, A., Sapru, H.N. Essential Neuroscience. Lippincott Williams & Wilkins (2006).

    Google Scholar 

  65. Singh, T., Newman, A.B. Inflammatory markers in population studies of aging, Ageing Res. Rev. 10(3), 319–329 (2011).

    Article  Google Scholar 

  66. Sivaloganathan, S., Tenti, G., Drake, J. Mathematical pressure volume models of the cerebrospinal fluid. Appl. Math. Comput. 94, 243–266 (1998).

    Google Scholar 

  67. Sivaloganathan, S., Stastna, M., Tenti, G., Drake, J.M. Biomechanics of the brain: A theoretical and numerical study of Biot’s equations of consolidation theory with deformation-dependent permeability. International Journal of Non-Linear Mechanics, 40(9), 1149–1159 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  68. Sivaloganathan, S., Stastna, M., Tenti, G., Drake, J.M. A viscoelastic approach to the modelling of hydrocephalus. Appl. Math. Comput. 163, 1097–1107 (2005).

    MathSciNet  MATH  Google Scholar 

  69. Sivaloganathan, S., Stastna, M., Tenti, G., Drake, J.M. A viscoelastic model of the brain parenchyma with pulsatile ventricular pressure. Appl. Math. Comput. 165, 687–698 (2005).

    MathSciNet  MATH  Google Scholar 

  70. Smillie, A., Sobey, I., Molnar, Z. A hydroelastic model of hydrocephalus. J. Fluid Mech. 539, 417–443 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  71. Sobey, I., Wirth, B. Effect of nonlinear permeability in a spherical model of hydrocephalus. Math. Med. Biol., 23, 339–361 (2006).

    Article  MATH  Google Scholar 

  72. Sobey, I., Eisenträger, A., Wirth, B., Czosnyka, M. Multi-fluid poro-elastic modelling of the CSF infusion test. WCB 2010, IFMBE Proceedings 31, 362–365 (2010).

    Article  Google Scholar 

  73. Sobey, I., Eisenträger, A., Wirth, B., Czosnyka, M. Simulation of cerebral infusion tests using a poroelastic model. Int. J. Numer. Anal. Model. B. 3(1), 52–64 (2012).

    MathSciNet  MATH  Google Scholar 

  74. Stastna, M., Tenti, G., Sivaloganathan, S., Drake, J.M. Brain biomechanics: Consolidation theory of hydrocephalus. Variable permeability and transient effects. Canadian Appl. Math. Quarterly, 7(1), 93–109 (1999).

    MathSciNet  MATH  Google Scholar 

  75. Stastna, M., Sivaloganathan, S., Tenti, G., Drake, J.M. Brain biomechanics: an exact solution, and asymptotics of slow variations, for the time dependent equations of consolidation theory. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 5(1), 415–426 (1999).

    MathSciNet  MATH  Google Scholar 

  76. Streitberger, K.J., Wiener, E., Hoffmann, J., Freimann, F.B., Klatt, D., Braun, J., Lin, K., McLaughlin, J., Sprung, C., Klingebiel, R., Sack, I. In vivo viscoelastic properties of the brain in normal pressure hydrocephalus. NMR Biomed. 24(4), 385–392 (2011).

    Google Scholar 

  77. Szmydynger-Chodobska, J., Chodobski, A. Peptide-mediated regulation of CSF formation and blood flow to the choroid plexus. The Blood-Cerebrospinal Fluid Barrier, pp. 101–118 (2005).

    Google Scholar 

  78. Taylor, Z., Miller, K. Reassessment of brain elasticity for analysis of biomechanisms of hydrocephalus. J. Biomech. 37, 1263–1269 (2004).

    Article  Google Scholar 

  79. Tenti, G., Drake, J.M., Sivaloganathan, S. Brain biomechanics: mathematical modeling of hydrocephalus. Neurological Research, 22(1), 19–24 (2000).

    Article  MATH  Google Scholar 

  80. Tenti, G., Sivaloganathan, S., Drake, J.M. Brain biomechanics: Steady-state consolidation theory of hydrocephalus. Canadian Appl. Math. Quarterly, 7(1), 111–124 (1999).

    MathSciNet  MATH  Google Scholar 

  81. Tenti, G., Sivaloganathan, S., Drake, J.M. Mathematical modeling of the brain: principles and challenges. Neurosurgery, 62, 1146–1157 (2008).

    Article  Google Scholar 

  82. Thibault, K. L., Margulies, S. S. Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria. J. Biomech. 31, 1119–1126 (1998).

    Article  Google Scholar 

  83. Tuli, S., Alshail, E., Drake, J. Third ventriculostomy versus cerebrospinal fluid shunt as a first procedure in pediatric hydrocephalus. Pediatric Neurosurgery, 30(1), 11–15 (1999).

    Article  Google Scholar 

  84. Tully, B., Ventikos, Y. Coupling poroelasticity and CFD for cerebrospinal fluid hydrodynamics. IEEE Trans. Biomed. Eng. 56(6), 1644–1651 (2009).

    Article  Google Scholar 

  85. Tully, B., Ventikos, Y. Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus. J. Fluid Mech. 667, 188–215 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  86. Vacca, V. Diagnosis and treatment of idiopathic normal-pressure hydrocephalus. J. Neurosci. Nurs. 39(2), 107–111 (2007).

    Article  Google Scholar 

  87. Vardakis, J.C., Tully, B.J., Ventikos, Y. Multicompartamental poroelasticity as a platform for the integrative modeling of water transport in the brain. Computer Models in Biomechanics, pp. 305–316 (2013).

    Chapter  Google Scholar 

  88. Vardakis, J.C., Tully, B.J., Ventikos, Y. Exploring the efficacy of endoscopic ventriculostomy for hydrocephalus treatment via a multicompartmental poroelastic model of CSF transport: a computational perspective. PLoS ONE 8(12), e84577 (2013).

    Article  Google Scholar 

  89. Virchow, R. Ueber die Erweiterung kleinerer Gefaesse. Archiv. Pathol. Anat. Physiol. Klin. Med. 3, 427–462 (1851).

    Article  Google Scholar 

  90. Walsh, E.K., Schettini, A. Brain tissue elasticity and CSF elastance, Intracranial Pressure VII, pp. 271–274 (1989).

    Google Scholar 

  91. Wang, H.W., Amin, M.S., El-Shahat, E., Huang, B.S., Tuana, B.S., Leenen, F.H.H. Effects of central sodium on epithelial sodium channels in rat brain, Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R222–R233 (2010).

    Article  Google Scholar 

  92. Wilkie, K.P., Drapaca, C.S., Sivaloganathan, S. A theoretical study of the effect of intraventricular pulsations on the pathogenesis of hydrocephalus. Appl. Math. Comput. 215, 3181–3191 (2010).

    MathSciNet  MATH  Google Scholar 

  93. Wilkie, K.P., Drapaca, C.S., Sivaloganathan, S. A nonlinear viscoelastic fractional derivative model of infant hydrocephalus. Appl. Math. Comput. 217, 8693–8704 (2011).

    MathSciNet  MATH  Google Scholar 

  94. Wilkie, K.P., Drapaca, C.S., Sivaloganathan, S. Aging impact on brain biomechanics with applications to hydrocephalus. Math. Med. Biol. 29(2), 145–161 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  95. Wilkie, K.P., Nagra, G., Johnston, M. A mathematical analysis of physiological and molecular mechanisms that modulate pressure gradients and facilitate ventricular expansion in hydrocephalus. Int. J. Numer. Anal. Model. 1(1), 65–81 (2012).

    MathSciNet  MATH  Google Scholar 

  96. Wirth, B., Sobey, I. A model for an inverse power constitutive law for cerebral compliance. Math. Med. Biol. 25, 113–131 (2008).

    Article  MATH  Google Scholar 

  97. Wirth, B., Sobey, I. An axisymmetric and fully 3D poroelastic model for the evolution of hydrocephalus. Math. Medicine Biol. 23, 363–388 (2006).

    Article  MATH  Google Scholar 

  98. Zhang, J., Williams, M.A., Rigamonti, D. Genetics of human hydrocephalus. J. Neurol., 253, 1255–1266 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Drapaca, C., Sivaloganathan, S. (2019). Mechanics of Hydrocephalus. In: Mathematical Modelling and Biomechanics of the Brain. Fields Institute Monographs, vol 37. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9810-4_3

Download citation

Publish with us

Policies and ethics