Skip to main content

Alterations in Body Composition After SCI and the Mitigating Role of Exercise

  • Chapter
  • First Online:
The Physiology of Exercise in Spinal Cord Injury

Abstract

Spinal cord injury (SCI) profoundly influences human body composition due to an obligatory sarcopenia, drastically reduced basal metabolism and subsequent development of neurogenic obesity. This chapter will review the pathophysiology of SCI and adipose tissue, report on the current state of the science for body composition assessment in this vulnerable population and reflect upon the literature demonstrating body composition changes through exercise for persons with SCI. Recommendations for future investigations will also be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Of note, the author has calculated BMI for each of the three studies above, since it was not routinely determined in the 1980’s. One study from 2005 reported body composition assessment by hydrodensitometry in n = 20 persons (n = 14 ♂, n = 6 ♀) with paraplegia, noting BMI 24.8 ± 6.0 with corresponding body fat of 28.3 ± 5.2 %BF (Clasey and Gater 2005).

References

  • Aso Y et al (2005) Metabolic syndrome accompanied by hypercholesterolemia is strongly associated with proinflammatory state and impairment of fibrinolysis in patients with type 2 diabetes: synergistic effects of plasminogen activator inhibitor-1 and thrombin-activatable fibrinolysis inhibitor. Diabetes Care 28(9):2211–2216

    Article  CAS  PubMed  Google Scholar 

  • Astorino TA, Harness ET, Witzke KA (2015) Chronic activity-based therapy does not improve body composition, insulin-like growth factor-I, adiponectin, or myostatin in persons with spinal cord injury. J Spinal Cord Med 38(5):615–625

    Article  PubMed  PubMed Central  Google Scholar 

  • Aubert H et al (2003) Weak and non-independent association between plasma TAFI antigen levels and the insulin resistance syndrome. J Thromb Haemost 1(4):791–797

    Article  CAS  PubMed  Google Scholar 

  • Bakkum AJT et al (2015) Effects of hybrid cycle and handcycle exercise on cardiovascular disease risk factors in people with spinal cord injury: a randomized controlled trial. J Rehabil Med 47(6):523–530

    Article  PubMed  Google Scholar 

  • Baldi JC et al (1998) Muscle atrophy is prevented in patients with acute spinal cord injury using functional electrical stimulation. Spinal Cord 36(7):463–469

    Article  CAS  PubMed  Google Scholar 

  • Bauman WA et al (2004) The relationship between energy expenditure and lean tissue in monozygotic twins discordant for spinal cord injury. J Rehabil Res Dev 41(1):1–8

    Article  PubMed  Google Scholar 

  • Beck LA et al (2014) Body composition of women and men with complete motor paraplegia. The J Spinal Cord Med 37:359–365

    Article  PubMed  Google Scholar 

  • Behnke AR (1942) The specific gravity of healthy men—Body weight divided by volume as an index of obesity. J Am Med Assoc 118:495–498

    Article  Google Scholar 

  • Behnke AR, Osserman EF, Welham WC (1953) Lean body mass—Its clinical significance and estimation from excess fat and total body water determinations. Arch Intern Med 91(5)

    Google Scholar 

  • Blake GJ, Ridker PM (2001) Novel clinical markers of vascular wall inflammation. Circ Res 89(9):763–771

    Article  CAS  PubMed  Google Scholar 

  • Bloomfield SA, Mysiw WJ, Jackson RD (1996) Bone mass and endocrine adaptations to training in spinal cord injured individuals. Bone 19(1):61–68

    Article  CAS  PubMed  Google Scholar 

  • Brozek J, Keys A (1951) The evaluation of leanness-fatness in man—norms and interrelationships. Br J Nutr 5(2):194–206

    Article  CAS  PubMed  Google Scholar 

  • Brozek J et al (1963) Densitometric analysis of body composition revision of some quantiative assumptions. Ann N Y Acad Sci 110(1):113–140

    Article  CAS  PubMed  Google Scholar 

  • Buchholz AC, McGillivray CF, Pencharz PB (2003a) The use of bioelectric impedance analysis to measure fluid compartments in subjects with chronic paraplegia. Arch Phys Med Rehabil 84(6):854–861

    Article  PubMed  Google Scholar 

  • Buchholz AC, McGillivray CF, Pencharz PB (2003b) Differences in resting metabolic rate between paraplegic and able-bodied subjects are explained by differences in body composition. Am J Clin Nutr 77(2):371–378

    CAS  PubMed  Google Scholar 

  • Bulbulian R et al (1987) Body-composition in paraplegic male-athletes. Med Sci Sports Exerc 19(3):195–201

    Article  CAS  PubMed  Google Scholar 

  • Cardus D, McTaggart WG (1984) Total-body water and its distribution in men with spinal-cord injury. Arch Phys Med Rehabil 65(9):509–512

    CAS  PubMed  Google Scholar 

  • Chen SC et al (2005) Increases in bone mineral density after functional electrical stimulation cycling exercises in spinal cord injured patients. Disabil Rehabil 27(22):1337–1341

    Article  PubMed  Google Scholar 

  • Cirnigliaro CM et al (2015) Visceral adiposity in persons with chronic spinal cord injury determined by dual energy X-ray absorptiometry. Obesity (Silver Spring) 23(9):1811–1817

    Article  Google Scholar 

  • Clark JM et al (2007) Physiological effects of lower extremity functional electrical stimulation in early spinal cord injury: lack of efficacy to prevent bone loss. Spinal Cord 45(1):78–85

    Article  CAS  PubMed  Google Scholar 

  • Clasey JL, Gater DR (2005) A comparison of hydrostatic weighing and air displacement plethysmography in adults with spinal cord injuries. Arch Phys Med Rehabil 86(11):2106–2113

    Article  PubMed  Google Scholar 

  • Clasey JL, Gater DR (2007) Body composition assessment in adults with spinal cord injury. Top Spinal Cord Injury Rehabil 12(4):8–19

    Article  Google Scholar 

  • Clasey JL, Janowiak AL, Gater DR (2004) Relationship between regional bone density measurements and the time since injury in adults with spinal cord injuries. Arch Phys Med Rehabil 85(1):59–64

    Article  PubMed  Google Scholar 

  • Cox SAR et al (1985) Energy-expenditure after spinal-cord injury: an evaluation of stable rehabilitating patients. J Trauma 25(5):419–423

    Article  CAS  PubMed  Google Scholar 

  • de Abreu DCC et al (2009) Electrical stimulation during gait promotes increase of muscle cross-sectional area in quadriplegics: a preliminary study. Clin Orthop Relat Res 467(2):553–557

    Article  PubMed  Google Scholar 

  • de Bruin ED et al (2005) Long-term changes in the tibia and radius bone mineral density following spinal cord injury. Spinal Cord 43(2):96–101

    Article  PubMed  Google Scholar 

  • Doherty AL et al (2014) Adiponectin is a candidate biomarker of lower extremity bone density in men with chronic spinal cord injury. J Bone Miner Res 29(1):251–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durnin J, Womersle. J (1974) Body fat assessed from total-body density and its estimation from skinfold thickness—measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 32(1):77–97

    Article  CAS  PubMed  Google Scholar 

  • Frey-Rindova P et al (2000) Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography. Spinal Cord 38(1):26–32

    Article  CAS  PubMed  Google Scholar 

  • Frotzler A et al (2008) High-volume FES-cycling partially reverses bone loss in people with chronic spinal cord injury. Bone 43(1):169–176

    Article  PubMed  Google Scholar 

  • Garland DE et al (1992) Osteoporosis after spinal-cord injury. J Orthop Res 10(3):371–378

    Article  CAS  PubMed  Google Scholar 

  • Gater DR (2007) Pathophysiology of obesity after spinal cord injury. Top Spinal Cord Injury Rehabil 12(4):20–34

    Article  Google Scholar 

  • Gater DR et al (2011) Functional electrical stimulation therapies after spinal cord injury. NeuroRehabilitation 28(3):231–248

    PubMed  Google Scholar 

  • George CM, Wells CL, Dugan NL (1988) Validity of hydrodensitometry for determination of body-composition in spinal injured subjects. Hum Biol 60(5):771–780

    CAS  PubMed  Google Scholar 

  • Gibson AE, Buchholz AC, Martin Ginis KA (2008) C-reactive protein in adults with chronic spinal cord injury: increased chronic inflammation in tetraplegia vs paraplegia. Spinal Cord 46:616–621

    Article  CAS  PubMed  Google Scholar 

  • Gorgey AS, Gater DR (2011) Regional and relative adiposity patterns in relation to carbohydrate and lipid metabolism in men with spinal cord injury. Appl Physiol Nutr Metab 36(1):107–114

    Article  CAS  PubMed  Google Scholar 

  • Gorgey AS, Shepherd C (2010) Skeletal muscle hypertrophy and decreased intramuscular fat after unilateral resistance training in spinal cord injury: case report. J Spinal Cord Med 33(1):90–95

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorgey AS et al (2011) Influence of motor complete spinal cord injury on visceral and subcutaneous adipose tissue measured by multi-axial magnetic resonance imaging. J Spinal Cord Med 34:99–109

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorgey AS et al (2012a) Effects of resistance training on adiposity and metabolism after spinal cord injury. Med Sci Sports Exerc 44:165–174

    Article  CAS  PubMed  Google Scholar 

  • Gorgey AS et al (2012b) A report of anticipated benefits of functional electrical stimulation after spinal cord injury. J Spinal Cord Med 35:107–112

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorgey AS et al (2013) Neuromuscular electrical stimulation attenuates thigh skeletal muscles atrophy but not trunk muscles after spinal cord injury. J Electromyogr Kinesiol 23(4):977–984

    Article  PubMed  Google Scholar 

  • Gorgey AS et al (2015) The effects of electrical stimulation on body composition and metabolic profile after spinal cord injury—Part II. J Spinal Cord Med 38(1):23–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffin L et al (2009) Functional electrical stimulation cycling improves body composition, metabolic and neural factors in persons with spinal cord injury. J Electromyogr Kinesiol 19(4):614–622

    Article  CAS  PubMed  Google Scholar 

  • Grundy SM (2008) Metabolic syndrome pandemic. Arteriosc Thromb Vasc Biol 28(4):629–636

    Article  CAS  Google Scholar 

  • Han SH et al (2015) Comparison of fat mass percentage and body mass index in Koreans with spinal cord injury according to the severity and duration of motor paralysis. Ann Rehabil Med 39(3):384–392

    Article  PubMed  PubMed Central  Google Scholar 

  • Heyward VH (2001) ASEP methods recommendation: body composition assessment. J Exerc Physiol Online 4(4):1–12

    Google Scholar 

  • Heyward VH, Wagner DR (2004) Applied body composition assessment. Human Kinetics, Champaign, IL

    Google Scholar 

  • Hjeltnes N et al (1997) Improved body composition after 8 wk of electrically stimulated leg cycling in tetraplegic patients. Am J Physiol 42(3):R1072–R1079

    Google Scholar 

  • Hotamisligil GS et al (1994) Tumor necrosis factor [alpha] inhibits signaling from the insulin receptor. Proc Natl Acad Sci USA 91(11):4854–4858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon JY et al (2010) Reduced plasma glucose and leptin after 12 weeks of functional electrical stimulation-rowing exercise training in spinal cord injury patients. Arch Phys Med Rehabil 91(12):1957–1959

    Article  PubMed  Google Scholar 

  • Jones LM, Legge M, Goulding A (2003) Healthy body mass index values often underestimate body fat in men with spinal cord injury. Arch Phys Med Rehabil 84(7):1068–1071

    Article  PubMed  Google Scholar 

  • Jones LM, Legge M, Goulding A (2004) Factor analysis of the metabolic syndrome in spinal cord-injured men. Metabolism 53(10):1372–1377

    Article  CAS  PubMed  Google Scholar 

  • Kim DI et al (2014) A six-week motor-driven functional electronic stimulation rowing program improves muscle strength and body composition in people with spinal cord injury: a pilot study. Spinal Cord 52(8):621–624

    Article  PubMed  Google Scholar 

  • Kim DI et al (2015) Effects of a 6-week indoor hand-bike exercise program on health and fitness levels in people with spinal cord injury: a randomized controlled trial study. Arch Phys Med Rehabil 96(11):2033–U325

    Article  PubMed  Google Scholar 

  • Kolovou GD, Anagnostopoulou KK, Cokkinos DV (2005) Pathophysiology of dyslipidaemia in the metabolic syndrome. Postgrad Med J 81(956):358–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwiterovich J, Peter O, Coresh J, Bachorik PS (1993) Prevalence of hyperapobetalipoproteinemia and other lipoprotein phenotypes in men (aged <=50 years) and women (<=60 years) with coronary artery disease. Am J Cardiol 71(8):631–639

    Article  PubMed  Google Scholar 

  • Lauer RT et al (2011) Effects of cycling and/or electrical stimulation on bone mineral density in children with spinal cord injury. Spinal Cord 49(8):917–923

    Article  CAS  PubMed  Google Scholar 

  • Lussier L et al (1983) Body-composition comparison in 2 elite female wheelchair athletes. Paraplegia 21(1):16–22

    Article  CAS  PubMed  Google Scholar 

  • Maggioni M et al (2003) Body composition assessment in spinal cord injury subjects. Acta Diabetol 40:S183–S186

    Article  PubMed  Google Scholar 

  • Maimoun L et al (2004) Circulating leptin concentrations can be used as a surrogate marker of fat mass in acute spinal cord injury patients. Metabolism 53(8):989–994

    Article  CAS  PubMed  Google Scholar 

  • Manns PJ, McCubbin JA, Williams DP (2005) Fitness, inflammation, and the metabolic syndrome in men with paraplegia. Arch Phys Med Rehabil 86(6):1176–1181

    Article  PubMed  Google Scholar 

  • Maruyama Y et al (2008) Serum leptin, abdominal obesity and the metabolic syndrome in individuals with chronic spinal cord injury. Spinal Cord 46(7):494–499

    Article  CAS  PubMed  Google Scholar 

  • Modlesky CM et al (2004) Assessment of skeletal muscle mass in men with spinal cord injury using dual-energy X-ray absorptiometry and magnetic resonance imaging. J Appl Physiol 96(2):561–565

    Article  PubMed  Google Scholar 

  • Mohr T et al (1997a) Long term adaptation to electrically induced cycle training in severe spinal cord injured individuals. Spinal Cord 35(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Mohr T et al (1997b) Increased bone mineral density after prolonged electrically induced cycle training of paralyzed limbs in spinal cord injured man. Calcif Tissue Int 61(1):22–25

    Article  CAS  PubMed  Google Scholar 

  • Mojtahedi MC, Valentine RJ, Evans EM (2009) Body composition assessment in athletes with spinal cord injury: comparison of field methods with dual-energy X-ray absorptiometry. Spinal Cord 47(9):698–704

    Article  CAS  PubMed  Google Scholar 

  • Mollinger LA et al (1985) Daily energy expenditure and basal metabolic rates of patients with spinal cord injury. Arch Phys Med Rehabil 66:420–426

    CAS  PubMed  Google Scholar 

  • Neto FR, Lopes GH (2011) Body composition modifications in people with chronic spinal cord injury after supervised physical activity. J Spinal Cord Med 34(6):586–593

    Article  PubMed  PubMed Central  Google Scholar 

  • Nuhlicek DNR et al (1988) Body-composition of patients with spinal-cord injury. Eur J Clin Nutr 42(9):765–773

    CAS  PubMed  Google Scholar 

  • Rosety-Rodriguez M et al (2014a) Low-grade systemic inflammation and leptin levels were improved by arm cranking exercise in adults with chronic spinal cord injury. Arch Phys Med Rehabil 95(2):297–302

    Article  PubMed  Google Scholar 

  • Rosety-Rodriguez M et al (2014b) A short-term arm-crank exercise program improved testosterone deficiency in adults with chronic spinal cord injury. Int Braz J Urol 40(3):367–372

    Article  PubMed  Google Scholar 

  • Ryan TE et al (2013) Electrically induced resistance training in individuals with motor complete spinal cord injury. Arch Phys Med Rehabil 94(11):2166–2173

    Article  PubMed  Google Scholar 

  • Scremin AME et al (1999) Increasing muscle mass in spinal cord injured persons with a functional electrical stimulation exercise program. Arch Phys Med Rehabil 80(12):1531–1536

    Article  CAS  PubMed  Google Scholar 

  • Sedlock DA, Laventure SJ (1990) Body-composition and resting energy-expenditure in long-term spinal-cord injury. Paraplegia 28(7):448–454

    Article  CAS  PubMed  Google Scholar 

  • Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106(2):171–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siri WE (1956) The gross composition of the body. Adv Biol Med Phys 4:239–280

    Article  CAS  PubMed  Google Scholar 

  • Skold C et al (2002) Effects of functional electrical stimulation training for six months on body composition and spasticity in motor complete tetraplegic spinal cord-injured individuals. J Rehabil Med 34(1):25–32

    Article  PubMed  Google Scholar 

  • Spungen AM et al (2000) Soft tissue body composition differences in monozygotic twins discordant for spinal cord injury. J Appl Physiol 88(4):1310–1315

    CAS  PubMed  Google Scholar 

  • Spungen AM et al (2003) Factors influencing body composition in persons with spinal cord injury: a cross-sectional study. J Appl Physiol 95(6):2398–2407

    Article  PubMed  Google Scholar 

  • Summers SA et al (1998) Regulation of insulin-stimulated glucose transporter GLUT4 translocation and Akt kinase activity by ceramide. Mol Cell Biol 18(9):5457–5464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanhoffer RA et al (2014) Exercise, energy expenditure, and body composition in people with spinal cord injury. J Phys Act Health 11(7):1393–1400

    Article  PubMed  Google Scholar 

  • Wang ZM, Pierson RN, Heymsfield SB (1992) The 5-level model—a new approach to organizing body-composition research. Am J Clin Nutr 56(1):19–28

    CAS  PubMed  Google Scholar 

  • WHO (2000) Obesity: preventing and managing the global epidemic, WHO technical report series, vol 894, pp. i–xii 1–253

    Google Scholar 

  • Willems A et al (2015) Dual-energy X-ray absorptiometry, skinfold thickness, and waist circumference for assessing body composition in ambulant and non-ambulant wheelchair games players. Front Physiol 6:356

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilmore JH et al (1980) Further simplification of a method for determination of residual lung-volume. Med Sci Sports Exerc 12(3):216–218

    Article  CAS  PubMed  Google Scholar 

  • Wofford MR, Hall JE (2004) Pathophysiology and treatment of obesity hypertension. Curr Pharm Des 10(29):3621–3637

    Article  CAS  PubMed  Google Scholar 

  • Yarar-Fisher C et al (2013) Body mass index underestimates adiposity in women with spinal cord injury. Obesity (Silver Spring) 21(6)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Gater M.D., Ph.D., M.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The American Physiological Society

About this chapter

Cite this chapter

Gater, D.R., Farkas, G.J. (2016). Alterations in Body Composition After SCI and the Mitigating Role of Exercise. In: Taylor, J. (eds) The Physiology of Exercise in Spinal Cord Injury. Physiology in Health and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4939-6664-6_9

Download citation

Publish with us

Policies and ethics