Skip to main content

Cardiovascular Responses to Exercise in Spinal Cord Injury

  • Chapter
  • First Online:
The Physiology of Exercise in Spinal Cord Injury

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

Spinal cord injury (SCI) has a significant impact on the structure and function of the cardiovascular system, typically leading to smaller sized vessels below the lesion and impairment of endothelial function throughout the body. These cardiovascular changes are primarily driven by a reduction in physical activity, supported by the ability to (at least partly) reverse these cardiovascular adaptations after (electrical stimulation-mediated) exercise training. This chapter provides an overview of the adaptations that occur in the cardiovascular system in SCI individuals, involving the heart, conduit, resistance and (skin and muscle) microvessels. These changes to the cardiovascular system have significant impact on the cardiovascular responses to exercise. For example, the inability of paralyzed muscles to pump back blood, pooling of blood in the veins and impaired blood redistribution contribute to a reduced return of blood to the heart. The ability of the heart to pump out large quantities of blood is vital when performing exercise. Therefore, an impaired return of blood will significantly affect the ability of SCI individuals to perform exercise. The ability to perform exercise is further compromised in SCI individuals who have disturbed cardiac innervation, which impairs the ability to increase heart rate during exercise. This chapter summarized the work related to the cardiovascular responses to exercise in subjects with a SCI, and how this affects the ability to perform exercise.

This publication was supported by funds received from the Stoke Mandeville-Masson Research Awards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams V, Linke A, Krankel N, Erbs S, Gielen S, Mobius-Winkler S, Gummert JF, Mohr FW, Schuler G, Hambrecht R (2005) Impact of regular physical activity on the NAD(P)H oxidase and angiotensin receptor system in patients with coronary artery disease. Circulation 111:555–562

    Article  CAS  PubMed  Google Scholar 

  • Anderson TJ, Charbonneau F, Title LM, Buithieu J, Rose MS, Conradson H, Hildebrand K, Fung M, Verma S, Lonn EM (2011) Microvascular function predicts cardiovascular events in primary prevention: long-term results from the firefighters and their endothelium (FATE) study. Circulation 123:163–169

    Article  PubMed  Google Scholar 

  • Bauman WA, Spungen AM (1994) Disorders of carbohydrate and lipid metabolism in veterans with paraplegia or quadriplegia: a model of premature aging. Metabolism 43:749–756

    Article  CAS  PubMed  Google Scholar 

  • Bauman WA, Adkins RH, Spungen AM, Herbert R, Schechter C, Smith D, Kemp BJ, Gambino R, Maloney P, Waters RL (1999) Is immobilization associated with an abnormal lipoprotein profile? Observations from a diverse cohort. Spinal Cord 37:485–493

    Article  CAS  PubMed  Google Scholar 

  • Bell JW, Chen D, Bahls M, Newcomer SC (2011) Evidence for greater burden of peripheral arterial disease in lower extremity arteries of spinal cord-injured individuals. Am J Physiol 301:H766–H772

    CAS  Google Scholar 

  • Bestle MH, Norsk P, Bie P (2001) Fluid volume and osmoregulation in humans after a week of head-down bed rest. Am J Physiol Regul Integr Comp Physiol 281:R310–R317

    CAS  PubMed  Google Scholar 

  • Birk GK, Dawson EA, Timothy Cable N, Green DJ, Thijssen DH (2013) Effect of unilateral forearm inactivity on endothelium-dependent vasodilator function in humans. Eur J Appl Physiol 113:933–940

    Article  PubMed  Google Scholar 

  • Black MA, Green DJ, Cable NT (2008) Exercise prevents age-related decline in nitric-oxide-mediated vasodilator function in cutaneous microvessels. J Physiol 586:3511–3524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bleeker MW, De Groot PC, Poelkens F, Rongen GA, Smits P, Hopman MT (2005a) Vascular adaptation to 4 wk of deconditioning by unilateral lower limb suspension. Am J Physiol Heart Circ Physiol 288:H1747–H1755

    Article  CAS  PubMed  Google Scholar 

  • Bleeker MW, De Groot PC, Rongen GA, Rittweger J, Felsenberg D, Smits P, Hopman MT (2005b) Vascular adaptation to deconditioning and the effect of an exercise countermeasure: results of the Berlin Bed Rest study. J Appl Physiol 99:1293–1300

    Article  PubMed  Google Scholar 

  • Bleeker MW, Kooijman M, Rongen GA, Hopman MT, Smits P (2005c) Preserved contribution of nitric oxide to baseline vascular tone in deconditioned human skeletal muscle. J Physiol 565:685–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chilibeck PD, Jeon J, Weiss C, Bell G, Burnham R (1999) Histochemical changes in muscle of individuals with spinal cord injury following functional electrical stimulated exercise training. Spinal Cord 37:264–268

    Article  CAS  PubMed  Google Scholar 

  • Christ F, Gamble J, Baranov V, Kotov A, Chouker A, Thiel M, Gartside IB, Moser CM, Abicht J, Messmer K (2001) Changes in microvascular fluid filtration capacity during 120 days of 6 degrees head-down tilt. J Appl Physiol 91:2517–2522

    CAS  PubMed  Google Scholar 

  • Clarkson P, Montgomery HE, Mullen MJ, Donald AE, Powe AJ, Bull T, Jubb M, World M, Deanfield JE (1999) Exercise training enhances endothelial function in young men. J Am Coll Cardiol 33:1379–1385

    Article  CAS  PubMed  Google Scholar 

  • Claydon VE, Hol AT, Eng JJ, Krassioukov AV (2006) Cardiovascular responses and postexercise hypotension after arm cycling exercise in subjects with spinal cord injury. Arch Phys Med Rehabil 87:1106–1114

    Article  PubMed  Google Scholar 

  • Cohen ND, Dunstan DW, Robinson C, Vulikh E, Zimmet PZ, Shaw JE (2008) Improved endothelial function following a 14-month resistance exercise training program in adults with type 2 diabetes. Diabetes Res Clin Pract 79:405–411

    Article  CAS  PubMed  Google Scholar 

  • Crameri RM, Cooper P, Sinclair PJ, Bryant G, Weston A (2004) Effect of load during electrical stimulation training in spinal cord injury. Muscle Nerve 29:104–111

    Article  PubMed  Google Scholar 

  • Crandall CG, Shibasaki M, Wilson TE, Cui J, Levine BD (2003) Prolonged head-down tilt exposure reduces maximal cutaneous vasodilator and sweating capacity in humans. J Appl Physiol 94:2330–2336

    Article  CAS  PubMed  Google Scholar 

  • De Groot PC, Van Kuppevelt DH, Pons C, Snoek G, Van Der Woude LH, Hopman MT (2003) Time course of arterial vascular adaptations to inactivity and paralyses in humans. Med Sci Sports Exerc 35:1977–1985

    Article  PubMed  Google Scholar 

  • de Groot E, Hovingh GK, Wiegman A, Duriez P, Smit AJ, Fruchart JC, Kastelein JJ (2004a) Measurement of arterial wall thickness as a surrogate marker for atherosclerosis. Circulation 109:III33–III38

    Article  PubMed  Google Scholar 

  • de Groot PC, Poelkens F, Kooijman M, Hopman MT (2004b) Preserved flow-mediated dilation in the inactive legs of spinal cord-injured individuals. Am J Physiol Heart Circ Physiol 287:H374–H380

    Article  PubMed  Google Scholar 

  • de Groot P, Crozier J, Rakobowchuk M, Hopman M, MacDonald M (2005) Electrical stimulation alters FMD and arterial compliance in extremely inactive legs. Med Sci Sports Exerc 37:1356–1364

    Article  PubMed  Google Scholar 

  • de Groot PC, Bleeker MW, Hopman MT (2006a) Magnitude and time course of arterial vascular adaptations to inactivity in humans. Exerc Sport Sci Rev 34:65–71

    Article  PubMed  Google Scholar 

  • de Groot PC, Bleeker MW, van Kuppevelt DH, van der Woude LH, Hopman MT (2006b) Rapid and extensive arterial adaptations after spinal cord injury. Arch Phys Med Rehabil 87:688–696

    Article  PubMed  Google Scholar 

  • Degens H, Alway SE (2006) Control of muscle size during disuse, disease, and aging. Int J Sports Med 27:94–99

    Article  CAS  PubMed  Google Scholar 

  • Deitrick G, Charalel J, Bauman W, Tuckman J (2007) Reduced arterial circulation to the legs in spinal cord injury as a cause of skin breakdown lesions. Angiology 58:175–184

    Article  PubMed  Google Scholar 

  • DeSouza CA, Shapiro LF, Clevenger CM, Dinenno FA, Monahan KD, Tanaka H, Seals DR (2000) Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation 102:1351–1357

    Article  CAS  PubMed  Google Scholar 

  • Dinenno FA, Tanaka H, Monahan KD, Clevenger CM, Eskurza I, DeSouza CA, Seals DR (2001) Regular endurance exercise induces expansive arterial remodelling in the trained limbs of healthy men. J Physiol 534:287–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgerton VR, Zhou MY, Ohira Y, Klitgaard H, Jiang B, Bell G, Harris B, Saltin B, Gollnick PD, Roy RR et al (1995) Human fiber size and enzymatic properties after 5 and 11 days of spaceflight. J Appl Physiol 78:1733–1739

    CAS  PubMed  Google Scholar 

  • Fitzgerald PI, Sedlock DA, Knowlton RG (1990) Circulatory and thermal adjustments to prolonged exercise in paraplegic women. Med Sci Sports Exerc 22:629–635

    Article  CAS  PubMed  Google Scholar 

  • Fuchsjager-Mayrl G, Pleiner J, Wiesinger GF, Sieder AE, Quittan M, Nuhr MJ, Francesconi C, Seit HP, Francesconi M, Schmetterer L, Wolzt M (2002) Exercise training improves vascular endothelial function in patients with type 1 diabetes. Diabetes Care 25:1795–1801

    Article  PubMed  Google Scholar 

  • Garshick E, Kelley A, Cohen SA, Garrison A, Tun CG, Gagnon D, Brown R (2005) A prospective assessment of mortality in chronic spinal cord injury. Spinal Cord 43:408–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green DJ, O’Driscoll JG, Blanksby BA, Taylor RR (1997) Effect of casting on forearm resistance vessels in young men. Med Sci Sports Exerc 29:1325–1331

    Article  CAS  PubMed  Google Scholar 

  • Green D, Cheetham C, Reed C, Dembo L, O’Driscoll G (2002) Assessment of brachial artery blood flow across the cardiac cycle: retrograde flows during cycle ergometry. J Appl Physiol 93:361–368

    Article  PubMed  Google Scholar 

  • Green DJ, Walsh JH, Maiorana A, Best MJ, Taylor RR, O’Driscoll JG (2003) Exercise-induced improvement in endothelial dysfunction is not mediated by changes in CV risk factors: pooled analysis of diverse patient populations. Am J Physiol Heart Circ Physiol 285:H2679–H2687

    Article  CAS  PubMed  Google Scholar 

  • Green DJ, Bilsborough W, Naylor LH, Reed C, Wright J, O’Driscoll G, Walsh JH (2005) Comparison of forearm blood flow responses to incremental handgrip and cycle ergometer exercise: relative contribution of nitric oxide. J Physiol 562:617–628

    Article  CAS  PubMed  Google Scholar 

  • Green DJ, Jones H, Thijssen D, Cable NT, Atkinson G (2011) Flow-mediated dilation and cardiovascular event prediction: does nitric oxide matter? Hypertension 57:363–369

    Article  CAS  PubMed  Google Scholar 

  • Groothuis JT, Thijssen DH, Rongen GA, Deinum J, Danser AH, Geurts AC, Smits P, Hopman MT (2010) Angiotensin II contributes to the increased baseline leg vascular resistance in spinal cord-injured individuals. J Hypertens 28:2094–2101

    Article  CAS  PubMed  Google Scholar 

  • Hambrecht R, Adams V, Erbs S, Linke A, Krankel N, Shu Y, Baither Y, Gielen S, Thiele H, Gummert JF, Mohr FW, Schuler G (2003) Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 107:3152–3158

    Article  CAS  PubMed  Google Scholar 

  • Hamburg NM, McMackin CJ, Huang AL, Shenouda SM, Widlansky ME, Schulz E, Gokce N, Ruderman NB, Keaney JF Jr, Vita JA (2007) Physical inactivity rapidly induces insulin resistance and microvascular dysfunction in healthy volunteers. Arterioscler Thromb Vasc Biol 27:2650–2656

    Google Scholar 

  • Hopman MT, Oeseburg B, Binkhorst RA (1992a) Cardiovascular responses in paraplegic subjects during arm exercise. Eur J Appl Physiol Occup Physiol 65:73–78

    Article  CAS  PubMed  Google Scholar 

  • Hopman MT, Oeseburg B, Binkhorst RA (1992b) The effect of an anti-G suit on cardiovascular responses to exercise in persons with paraplegia. Med Sci Sports Exerc 24:984–990

    Article  CAS  PubMed  Google Scholar 

  • Hopman MT, Kamerbeek IC, Pistorius M, Binkhorst RA (1993a) The effect of an anti-G suit on the maximal performance of individuals with paraplegia. Int J Sports Med 14:357–361

    Article  CAS  PubMed  Google Scholar 

  • Hopman MT, Oeseburg B, Binkhorst RA (1993b) Cardiovascular responses in persons with paraplegia to prolonged arm exercise and thermal stress. Med Sci Sports Exerc 25:577–583

    Article  CAS  PubMed  Google Scholar 

  • Hopman MT, Pistorius M, Kamerbeek IC, Binkhorst RA (1993c) Cardiac output in paraplegic subjects at high exercise intensities. Eur J Appl Physiol Occup Physiol 66:531–535

    Article  CAS  PubMed  Google Scholar 

  • Hopman MT, Verheijen PH, Binkhorst RA (1993d) Volume changes in the legs of paraplegic subjects during arm exercise. J Appl Physiol 75:2079–2083

    CAS  PubMed  Google Scholar 

  • Hopman MT, van Asten WN, Oeseburg B (1996) Changes in blood flow in the common femoral artery related to inactivity and muscle atrophy in individuals with long-standing paraplegia. Adv Exp Med Biol 388:379–383

    Article  CAS  PubMed  Google Scholar 

  • Hopman MT, Groothuis JT, Flendrie M, Gerrits KH, Houtman S (2002) Increased vascular resistance in paralyzed legs after spinal cord injury is reversible by training. J Appl Physiol 93:1966–1972

    Article  PubMed  Google Scholar 

  • Houtman S, Oeseburg B, Hopman MT (2000) Blood volume and hemoglobin after spinal cord injury. Am J Phys Med Rehabil 79:260–265

    Article  CAS  PubMed  Google Scholar 

  • Huonker M, Halle M, Keul J (1996) Structural and functional adaptations of the cardiovascular system by training. Int J Sports Med 17(Suppl 3):S164–S172

    Article  CAS  PubMed  Google Scholar 

  • Huonker M, Schmid A, Sorichter S, Schmidt-Trucksab A, Mrosek P, Keul J (1998) Cardiovascular differences between sedentary and wheelchair-trained subjects with paraplegia. Med Sci Sports Exerc 30:609–613

    Article  CAS  PubMed  Google Scholar 

  • Huonker M, Schmid A, Schmidt-Trucksass A, Grathwohl D, Keul J (2003) Size and blood flow of central and peripheral arteries in highly trained able-bodied and disabled athletes. J Appl Physiol 95:685–691

    Article  CAS  PubMed  Google Scholar 

  • Jacobs PL, Mahoney ET, Robbins A, Nash M (2002) Hypokinetic circulation in persons with paraplegia. Med Sci Sports Exerc 34:1401–1407

    Article  PubMed  Google Scholar 

  • Jae SY, Heffernan KS, Lee M, Fernhall B (2008) Arterial structure and function in physically active persons with spinal cord injury. J Rehabil Med 40:535–538

    Article  PubMed  Google Scholar 

  • Jones LM, Legge M, Goulding A (2004) Factor analysis of the metabolic syndrome in spinal cord-injured men. Metabolism 53:1372–1377

    Article  CAS  PubMed  Google Scholar 

  • Kessler KM, Pina I, Green B, Burnett B, Laighold M, Bilsker M, Palomo AR, Myerburg RJ (1986) Cardiovascular findings in quadriplegic and paraplegic patients and in normal subjects. Am J Cardiol 58:525–530

    Article  CAS  PubMed  Google Scholar 

  • Kooijman M, Rongen GA, Smits P, Hopman MT (2003) Preserved alpha-adrenergic tone in the leg vascular bed of spinal cord-injured individuals. Circulation 108:2361–2367

    Article  PubMed  Google Scholar 

  • Krassioukov A (2009) Autonomic function following cervical spinal cord injury. Respir Physiol Neurobiol 169:157–164

    Article  PubMed  Google Scholar 

  • Langille BL, O’Donnell F (1986) Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231:405–407

    Article  CAS  PubMed  Google Scholar 

  • Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H, European Network for Non-invasive Investigation of Large A (2006) Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 27:2588–2605

    Article  PubMed  Google Scholar 

  • Lepori M, Sartori C, Duplain H, Nicod P, Scherrer U (1999) Sympathectomy potentiates the vasoconstrictor response to nitric oxide synthase inhibition in humans. Cardiovasc Res 43:739–743

    Article  CAS  PubMed  Google Scholar 

  • Levine BD, Zuckerman JH, Pawelczyk JA (1997) Cardiac atrophy after bed-rest deconditioning: a nonneural mechanism for orthostatic intolerance. Circulation 96:517–525

    Article  CAS  PubMed  Google Scholar 

  • Liang H, Chen D, Wang Y, Rimmer JH, Braunschweig CL (2007) Different risk factor patterns for metabolic syndrome in men with spinal cord injury compared with able-bodied men despite similar prevalence rates. Arch Phys Med Rehabil 88:1198–1204

    Article  PubMed  Google Scholar 

  • Lind L, Berglund L, Larsson A, Sundstrom J (2011) Endothelial function in resistance and conduit arteries and 5-year risk of cardiovascular disease. Circulation 123:1545–1551

    Article  PubMed  Google Scholar 

  • Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M (2007) Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation 115:459–467

    Article  PubMed  Google Scholar 

  • Low DA, da Nobrega AC, Mathias CJ (2012) Exercise-induced hypotension in autonomic disorders. Auton Neurosci 171:66–78

    Article  PubMed  Google Scholar 

  • Maeda S, Miyauchi T, Kakiyama T, Sugawara J, Iemitsu M, Irukayama-Tomobe Y, Murakami H, Kumagai Y, Kuno S, Matsuda M (2001) Effects of exercise training of 8 weeks and detraining on plasma levels of endothelium-derived factors, endothelin-1 and nitric oxide, in healthy young humans. Life Sci 69:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Maeda S, Sugawara J, Yoshizawa M, Otsuki T, Shimojo N, Jesmin S, Ajisaka R, Miyauchi T, Tanaka H (2009) Involvement of endothelin-1 in habitual exercise-induced increase in arterial compliance. Acta Physiol (Oxf) 196:223–229

    Article  CAS  Google Scholar 

  • Maiorana A, O'Driscoll G, Cheetham C, Dembo L, Stanton K, Goodman C, Taylor R, Green D (2001) The effect of combined aerobic and resistance exercise training on vascular function in type 2 diabetes. J Am Coll Cardiol 38:860–866

    Article  CAS  PubMed  Google Scholar 

  • Martin TP, Stein RB, Hoeppner PH, Reid DC (1992) Influence of electrical stimulation on the morphological and metabolic properties of paralyzed muscle. J Appl Physiol 72:1401–1406

    CAS  PubMed  Google Scholar 

  • Matos-Souza JR, Pithon KR, Ozahata TM, Gemignani T, Cliquet A Jr, Nadruz W Jr (2009) Carotid intima-media thickness is increased in patients with spinal cord injury independent of traditional cardiovascular risk factors. Atherosclerosis 202:29–31

    Google Scholar 

  • McAllister RM (1998) Adaptations in control of blood flow with training: splanchnic and renal blood flows. Med Sci Sports Exerc 30:375–381

    Article  CAS  PubMed  Google Scholar 

  • Michikami D, Kamiya A, Fu Q, Iwase S, Mano T, Sunagawa K (2004) Attenuated thermoregulatory sweating and cutaneous vasodilation after 14-day bed rest in humans. J Appl Physiol 96:107–114

    Article  PubMed  Google Scholar 

  • Miyatani M, Masani K, Oh PI, Miyachi M, Popovic MR, Craven BC (2009) Pulse wave velocity for assessment of arterial stiffness among people with spinal cord injury: a pilot study. J Spinal Cord Med 32:72–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Nash MS, Bilsker MS, Kearney HM, Ramirez JN, Applegate B, Green BA (1995) Effects of electrically-stimulated exercise and passive motion on echocardiographically-derived wall motion and cardiodynamic function in tetraplegic persons. Paraplegia 33:80–89

    Article  CAS  PubMed  Google Scholar 

  • Nicotra A, Asahina M, Mathias CJ (2004) Skin vasodilator response to local heating in human chronic spinal cord injury. Eur J Neurol 11:835–837

    Article  CAS  PubMed  Google Scholar 

  • Olive JL, Dudley GA, McCully KK (2003) Vascular remodeling after spinal cord injury. Med Sci Sports Exerc 35:901–907

    Article  PubMed  Google Scholar 

  • Paim LR, Schreiber R, Matos-Souza JR, Silva AA, Campos LF, Azevedo ER, Alonso K, de Rossi G, Etchebehere M, Gorla JI, Cliquet A Jr, Nadruz W Jr (2013) Oxidized low-density lipoprotein, matrix-metalloproteinase-8 and carotid atherosclerosis in spinal cord injured subjects. Atherosclerosis 231:341–345

    Google Scholar 

  • Parnell MM, Holst DP, Kaye DM (2005) Augmentation of endothelial function following exercise training is associated with increased L-arginine transport in human heart failure. Clin Sci (Lond) 109:523–530

    Article  CAS  Google Scholar 

  • Pawelczyk JA, Zuckerman JH, Blomqvist CG, Levine BD (2001) Regulation of muscle sympathetic nerve activity after bed rest deconditioning. Am J Physiol Heart Circ Physiol 280:H2230–H2239

    CAS  PubMed  Google Scholar 

  • Perhonen MA, Franco F, Lane LD, Buckey JC, Blomqvist CG, Zerwekh JE, Peshock RM, Weatherall PT, Levine BD (2001) Cardiac atrophy after bed rest and spaceflight. J Appl Physiol 91:645–653

    CAS  PubMed  Google Scholar 

  • Phillips AA, Cote AT, Bredin SS, Krassioukov AV, Warburton DE (2012) Aortic stiffness increased in spinal cord injury when matched for physical activity. Med Sci Sports Exerc 44:2065–2070

    Article  PubMed  Google Scholar 

  • Pluim BM, Zwinderman AH, van der Laarse A, van der Wall EE (2000) The athlete’s heart. A meta-analysis of cardiac structure and function. Circulation 101:336–344

    Article  CAS  PubMed  Google Scholar 

  • Pyke KE, Tschakovsky ME (2005) The relationship between shear stress and flow-mediated dilatation: implications for the assessment of endothelial function. J Physiol 568:357–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin L, Appell HJ, Chan KM, Maffulli N (1997) Electrical stimulation prevents immobilization atrophy in skeletal muscle of rabbits. Arch Phys Med Rehabil 78:512–517

    Article  CAS  PubMed  Google Scholar 

  • Robergs RA, Appenzeller O, Qualls C, Aisenbrey J, Krauss J, Kopriva L, DePaepe J (1993) Increased endothelin and creatine kinase after electrical stimulation of paraplegic muscle. J Appl Physiol 75:2400–2405

    CAS  PubMed  Google Scholar 

  • Rowley NJ, Dawson EA, Birk GK, Cable NT, George K, Whyte G, Thijssen DH, Green DJ (2011) Exercise and arterial adaptation in humans: uncoupling localized and systemic effects. J Appl Physiol 110:1190–1195

    Article  PubMed  Google Scholar 

  • Rowley NJ, Dawson EA, Hopman MT, George K, Whyte GP, Thijssen DH, Green DJ (2012) Conduit diameter and wall remodelling in elite athletes and spinal cord injury. Med Sci Sports Exerc 44:844–849

    Article  PubMed  Google Scholar 

  • Schmidt-Trucksass A, Schmid A, Brunner C, Scherer N, Zach G, Keul J, Huonker M (2000) Arterial properties of the carotid and femoral artery in endurance-trained and paraplegic subjects. J Appl Physiol 89:1956–1963

    CAS  PubMed  Google Scholar 

  • Schreuder TH, van Lotringen JH, Hopman MT, Thijssen DH (2014) Impact of endothelin blockade on acute exercise-induced changes in blood flow and endothelial function in type 2 diabetes mellitus. Exp Physiol 99:1253–1264

    Article  CAS  PubMed  Google Scholar 

  • Schroeder S, Enderle MD, Baumbach A, Ossen R, Herdeg C, Kuettner A, Karsch KR (2000) Influence of vessel size, age and body mass index on the flow-mediated dilatation (FMD%) of the brachial artery. Int J Cardiol 76:219–225

    Article  CAS  PubMed  Google Scholar 

  • Shibasaki M, Wilson TE, Cui J, Levine BD, Crandall CG (2003) Exercise throughout 6 degrees head-down tilt bed rest preserves thermoregulatory responses. J Appl Physiol 95:1817–1823

    Article  PubMed  Google Scholar 

  • Simmons GH, Padilla J, Young CN, Wong BJ, Lang JA, Davis MJ, Laughlin MH, Fadel PJ (2011) Increased brachial artery retrograde shear rate at exercise onset is abolished during prolonged cycling: role of thermoregulatory vasodilation. J Appl Physiol 110:389–397

    Article  PubMed  Google Scholar 

  • Simon A, Megnien JL, Chironi G (2010) The value of carotid intima-media thickness for predicting cardiovascular risk. Arterioscler Thromb Vasc Biol 30:182–185

    Article  CAS  PubMed  Google Scholar 

  • Stoner L, Sabatier M, VanhHiel L, Groves D, Ripley D, Palardy G, McCully K (2006) Upper vs lower extremity arterial function after spinal cord injury. J Spinal Cord Med 29:138–146

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugawara J, Hayashi K, Kaneko F, Yamada H, Kizuka T, Tanaka H (2004) Reductions in basal limb blood flow and lumen diameter after short-term leg casting. Med Sci Sports Exerc 36:1689–1694

    Article  PubMed  Google Scholar 

  • Theisen D (2012) Cardiovascular determinants of exercise capacity in the Paralympic athlete with spinal cord injury. Exp Physiol 97:319–324

    Article  PubMed  Google Scholar 

  • Thijssen DH, Ellenkamp R, Smits P, Hopman MT (2006) Rapid vascular adaptations to training and detraining in persons with spinal cord injury. Arch Phys Med Rehabil 87:474–481

    Article  PubMed  Google Scholar 

  • Thijssen DH, Ellenkamp R, Kooijman M, Pickkers P, Rongen GA, Hopman MT, Smits PA (2007) Causal role for endothelin-1 in the vascular adaptation to skeletal muscle deconditioning in spinal cord injury. Arterioscler Thromb Vasc Biol 27:325–331

    Article  CAS  PubMed  Google Scholar 

  • Thijssen DH, Dawson EA, Black MA, Hopman MT, Cable NT, Green DJ (2008a) Heterogeneity in conduit artery function in humans: impact of arterial size. Am J Physiol Heart Circ Physiol 295:H1927–H1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thijssen DH, Kooijman M, de Groot PC, Bleeker MW, Smits P, Green DJ, Hopman MT (2008b) Endothelium-dependent and -independent vasodilation of the superficial femoral artery in spinal cord-injured subjects. J Appl Physiol 104:1387–1393

    Article  CAS  PubMed  Google Scholar 

  • Thijssen DH, Rongen GA, Smits P, Hopman MT (2008c) Physical (in)activity and endothelium-derived constricting factors: overlooked adaptations. J Physiol 586:319–324

    Article  CAS  PubMed  Google Scholar 

  • Thijssen DH, Dawson EA, Black MA, Hopman MT, Cable NT, Green DJ (2009a) Brachial artery blood flow responses to different modalities of lower limb exercise. Med Sci Sports Exerc 41:1072–1079

    Article  PubMed  Google Scholar 

  • Thijssen DH, Green DJ, Steendijk S, Hopman MT (2009b) Sympathetic vasomotor control does not explain the change in femoral artery shear rate pattern during arm-crank exercise. Am J Physiol Heart Circ Physiol 296:H180–H185

    Article  CAS  PubMed  Google Scholar 

  • Thijssen DH, Steendijk S, Hopman MT (2009c) Blood redistribution during exercise in subjects with spinal cord injury and controls. Med Sci Sports Exerc 41:1249–1254

    Article  PubMed  Google Scholar 

  • Thijssen DH, Willems L, van den Munckhof I, Scholten R, Hopman MT, Dawson EA, Atkinson G, Cable NT, Green DJ (2011) Impact of wall thickness on conduit artery function in humans: is there a “Folkow” effect? Atherosclerosis 217:415–419

    Article  CAS  PubMed  Google Scholar 

  • Thijssen DH, De Groot PC, van den Bogerd A, Veltmeijer M, Cable NT, Green DJ, Hopman MT (2012) Time course of arterial remodelling in diameter and wall thickness above and below the lesion after a spinal cord injury. Eur J Appl Physiol 112:4103–4109

    Article  PubMed  PubMed Central  Google Scholar 

  • Tinken TM, Thijssen DH, Hopkins N, Dawson EA, Cable NT, Green DJ (2010) Shear stress mediates endothelial adaptations to exercise training in humans. Hypertension 55:312–318

    Article  CAS  PubMed  Google Scholar 

  • Tuttle JL, Nachreiner RD, Bhuller AS, Condict KW, Connors BA, Herring BP, Dalsing MC, Unthank JL (2001) Shear level influences resistance artery remodeling: wall dimensions, cell density, and eNOS expression. Am J Physiol Heart Circ Physiol 281:H1380–H1389

    CAS  PubMed  Google Scholar 

  • Van Duijnhoven NT, Janssen TW, Green DJ, Minson CT, Hopman MT, Thijssen DH (2009) Effect of functional electrostimulation on impaired skin vasodilator responses to local heating in spinal cord injury. J Appl Physiol 106:1065–1071

    Article  PubMed  Google Scholar 

  • van Duijnhoven NT, Green DJ, Felsenberg D, Belavy DL, Hopman MT, Thijssen DH (2010a) Impact of bed rest on conduit artery remodeling: effect of exercise countermeasures. Hypertension 56:240–246

    Article  PubMed  CAS  Google Scholar 

  • van Duijnhoven NT, Thijssen DH, Green DJ, Felsenberg D, Belavy DL, Hopman MT (2010b) Resistive exercise versus resistive vibration exercise to counteract vascular adaptations to bed rest. J Appl Physiol 108:28–33

    Article  PubMed  Google Scholar 

  • Wecht JM, Weir JP, DeMeersman RE, Spungen AM, Bauman WA (2004) Arterial stiffness in persons with paraplegia. J Spinal Cord Med 27:255–259

    Article  PubMed  Google Scholar 

  • West CR, Campbell IG, Shave RE, Romer LM (2012a) Effects of abdominal binding on cardiorespiratory function in cervical spinal cord injury. Respir Physiol Neurobiol 180:275–282

    Article  PubMed  Google Scholar 

  • West CR, Campbell IG, Shave RE, Romer LM (2012b) Resting cardiopulmonary function in Paralympic athletes with cervical spinal cord injury. Med Sci Sports Exerc 44:323–329

    Article  PubMed  Google Scholar 

  • West CR, Alyahya A, Laher I, Krassioukov A (2013) Peripheral vascular function in spinal cord injury: a systematic review. Spinal Cord 51:10–19

    Article  CAS  PubMed  Google Scholar 

  • West CR, Crawford MA, Poormasjedi-Meibod MS, Currie KD, Fallavollita A, Yuen V, McNeill JH, Krassioukov AV (2014) Passive hind-limb cycling improves cardiac function and reduces cardiovascular disease risk in experimental spinal cord injury. J Physiol 592:1771–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dick H. J. Thijssen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The American Physiological Society

About this chapter

Cite this chapter

Barton, T.J., Low, D.A., Thijssen, D.H.J. (2016). Cardiovascular Responses to Exercise in Spinal Cord Injury. In: Taylor, J. (eds) The Physiology of Exercise in Spinal Cord Injury. Physiology in Health and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4939-6664-6_6

Download citation

Publish with us

Policies and ethics