Skip to main content

Physiology of Motor Deficits and the Potential of Motor Recovery After a Spinal Cord Injury

  • Chapter
  • First Online:
The Physiology of Exercise in Spinal Cord Injury

Part of the book series: Physiology in Health and Disease ((PIHD))

  • 1220 Accesses

Abstract

The focus of this chapter is to highlight some fundamental concepts on the physiology of movement control after a spinal cord injury (SCI). We will discuss how these concepts are defined by the order of motor unit recruitment within a motor pool and how the relative recruitment across multiple motor pools defines the movements performed. We then will describe how these factors are affected by SCI. Understanding how these particular “neural decisions” might be modified by SCI will provide greater insight in assessing the etiology of the movement dysfunctions and thus in finding potential resolutions in a given individual at a given time post-injury (Fig. 2.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MM, Ditor DS, Tarnopolsky MA, Phillips SM, McCartney N et al (2006) The effect of body weight-supported treadmill training on muscle morphology in an individual with chronic, motor-complete spinal cord injury: a case study. J Spinal Cord Med 29:167–171

    Article  PubMed  PubMed Central  Google Scholar 

  • Adams CM, Suneja M, Dudley-Javoroski S, Shields RK (2011) Altered mRNA expression after long-term soleus electrical stimulation training in humans with paralysis. Muscle Nerve 43:65–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen JL, Mohr T, Biering-Sorensen F, Galbo H, Kjaer M (1996) Myosin heavy chain isoform transformation in single fibres from m. vastus lateralis in spinal cord injured individuals: effects of long-term functional electrical stimulation (FES). Pflugers Arch 431:513–518

    Article  CAS  PubMed  Google Scholar 

  • Baldi JC, Jackson RD, Moraille R, Mysiw WJ (1998) Muscle atrophy is prevented in patients with acute spinal cord injury using functional electrical stimulation. Spinal Cord 36:463–469

    Article  CAS  PubMed  Google Scholar 

  • Bauman WA, Spungen AM (1994) Disorders of carbohydrate and lipid metabolism in veterans with paraplegia or quadriplegia: a model of premature aging. Metabolism 43:749–756

    Article  CAS  PubMed  Google Scholar 

  • Bauman WA, Adkins RH, Spungen AM, Waters RL (1999) The effect of residual neurological deficit on oral glucose tolerance in persons with chronic spinal cord injury. Spinal Cord 37:765–771

    Article  CAS  PubMed  Google Scholar 

  • Beaumont E, Houle JD, Peterson CA, Gardiner PF (2004) Passive exercise and fetal spinal cord transplant both help to restore motoneuronal properties after spinal cord transection in rats. Muscle Nerve 29:234–242

    Article  PubMed  Google Scholar 

  • Bodine SC, Roy RR, Eldred E, Edgerton VR (1987) Maximal force as a function of anatomical features of motor units in the cat tibialis anterior. J Neurophysiol 57:1730–1745

    CAS  PubMed  Google Scholar 

  • Brown TG (1914) On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J Physiol 48:18–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns AS, Jawaid S, Zhong H, Yoshihara H, Bhagat S et al (2007) Paralysis elicited by spinal cord injury evokes selective disassembly of neuromuscular synapses with and without terminal sprouting in ankle flexors of the adult rat. J Comp Neurol 500:116–133

    Article  CAS  PubMed  Google Scholar 

  • Butler JE, Thomas CK (2003) Effects of sustained stimulation on the excitability of motoneurons innervating paralyzed and control muscles. J Appl Physiol 94:567–575

    Article  PubMed  Google Scholar 

  • Button DC, Kalmar JM, Gardiner K, Marqueste T, Zhong H et al (2008) Does elimination of afferent input modify the changes in rat motoneurone properties that occur following chronic spinal cord transection? J Physiol 586:529–544

    Article  CAS  PubMed  Google Scholar 

  • Castro MJ, Apple DF Jr, Hillegass EA, Dudley GA (1999a) Influence of complete spinal cord injury on skeletal muscle cross-sectional area within the first 6 months of injury. Eur J Appl Physiol Occup Physiol 80:373–378

    Google Scholar 

  • Castro MJ, Apple DF Jr, Staron RS, Campos GE, Dudley GA (1999b) Influence of complete spinal cord injury on skeletal muscle within 6 mo of injury. J Appl Physiol 86:350–358

    Google Scholar 

  • Celichowski J, Mrowczynski W, Krutki P, Gorska T, Majczynski H et al (2006) Changes in contractile properties of motor units of the rat medial gastrocnemius muscle after spinal cord transection. Exp Physiol 91:887–895

    Article  PubMed  Google Scholar 

  • Chalmers GR, Roy RR, Edgerton VR (1992) Adaptability of the oxidative capacity of motoneurons. Brain Res 570:1–10

    Article  CAS  PubMed  Google Scholar 

  • Chang YJ, Shields RK (2011) Doublet electrical stimulation enhances torque production in people with spinal cord injury. Neurorehabil Neural Repair 25:423–432

    Article  PubMed  PubMed Central  Google Scholar 

  • Chilibeck PD, Jeon J, Weiss C, Bell G, Burnham R (1999) Histochemical changes in muscle of individuals with spinal cord injury following functional electrical stimulated exercise training. Spinal Cord 37:264–268

    Article  CAS  PubMed  Google Scholar 

  • Cope TC, Sokoloff AJ (1999) Orderly recruitment tested across muscle boundaries. Prog Brain Res 123:177–190

    Article  CAS  PubMed  Google Scholar 

  • Cope TC, Bodine SC, Fournier M, Edgerton VR (1986) Soleus motor units in chronic spinal transected cats: physiological and morphological alterations. J Neurophysiol 55:1202–1220

    CAS  PubMed  Google Scholar 

  • Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P et al (2009) Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 12:1333–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crameri RM, Weston AR, Rutkowski S, Middleton JW, Davis GM et al (2000) Effects of electrical stimulation leg training during the acute phase of spinal cord injury: a pilot study. Eur J Appl Physiol 83:409–415

    Article  CAS  PubMed  Google Scholar 

  • Crameri RM, Weston A, Climstein M, Davis GM, Sutton JR (2002) Effects of electrical stimulation-induced leg training on skeletal muscle adaptability in spinal cord injury. Scand J Med Sci Sports 12:316–322

    Article  CAS  PubMed  Google Scholar 

  • Czeh G, Gallego R, Kudo N, Kuno M (1978) Evidence for the maintenance of motoneurone properties by muscle activity. J Physiol 281:239–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Abreu DC, Cliquet A Jr, Rondina JM, Cendes F (2009) Electrical stimulation during gait promotes increase of muscle cross-sectional area in quadriplegics: a preliminary study. Clin Orthop Relat Res 467:553–557

    Google Scholar 

  • de Leon RD, Hodgson JA, Roy RR, Edgerton VR (1998a) Full weight-bearing hindlimb standing following stand training in the adult spinal cat. J Neurophysiol 80:83–91

    CAS  PubMed  Google Scholar 

  • de Leon RD, Hodgson JA, Roy RR, Edgerton VR (1998b) Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats. J Neurophysiol 79:1329–1340

    PubMed  Google Scholar 

  • de Leon RD, Reinkensmeyer DJ, Timoszyk WK, London NJ, Roy RR et al (2002) Use of robotics in assessing the adaptive capacity of the rat lumbar spinal cord. Prog Brain Res 137:141–149

    Article  PubMed  Google Scholar 

  • Deley G, Denuziller J, Babault N, Taylor JA (2015) Effects of electrical stimulation pattern on quadriceps isometric force and fatigue in individuals with spinal cord injury. Muscle Nerve 52:260–264

    Article  PubMed  Google Scholar 

  • Duckworth WC, Solomon SS, Jallepalli P, Heckemeyer C, Finnern J et al (1980) Glucose intolerance due to insulin resistance in patients with spinal cord injuries. Diabetes 29:906–910

    Article  CAS  PubMed  Google Scholar 

  • Dudley GA, Castro MJ, Rogers S, Apple DF Jr (1999) A simple means of increasing muscle size after spinal cord injury: a pilot study. Eur J Appl Physiol Occup Physiol 80:394–396

    Google Scholar 

  • Duffell LD, Donaldson Nde N, Perkins TA, Rushton DN, Hunt KJ et al (2008) Long-term intensive electrically stimulated cycling by spinal cord-injured people: effect on muscle properties and their relation to power output. Muscle Nerve 38:1304–1311

    Article  PubMed  Google Scholar 

  • Dupont-Versteegden EE, Houle JD, Gurley CM, Peterson CA (1998) Early changes in muscle fiber size and gene expression in response to spinal cord transection and exercise. Am J Physiol 275:C1124–C1133

    CAS  PubMed  Google Scholar 

  • Edgerton VR, Bodine-Fowler S, Roy RR, Ishihara A, Hodgson JA (1996) Neuromuscular adaptation. In: Rowell LB, Shepherd JT (eds) Handbook of physiology. Oxford University Press, New York, pp. 54–88

    Google Scholar 

  • Edgerton VR, de Leon RD, Tillakaratne N, Recktenwald MR, Hodgson JA et al (1997) Use-dependent plasticity in spinal stepping and standing. Adv Neurol 72:233–247

    CAS  PubMed  Google Scholar 

  • Forssberg H, Grillner S, Rossignol S (1975) Phase dependent reflex reversal during walking in chronic spinal cats. Brain Res 85:103–107

    Article  CAS  PubMed  Google Scholar 

  • Gad P, Choe J, Shah P, Garcia-Alias G, Rath M et al (2013a) Sub-threshold spinal cord stimulation facilitates spontaneous motor activity in spinal rats. J Neuroeng Rehabil 10:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Gad P, Choe J, Nandra MS, Zhong H, Roy RR et al (2013b) Development of a multi-electrode array for spinal cord epidural stimulation to facilitate stepping and standing after a complete spinal cord injury in adult rats. J Neuroeng Rehabil 10:2

    PubMed  PubMed Central  Google Scholar 

  • Gad PN, Gerasimenko YP, Zdunowski S, Sayenko D, Haakana P et al (2015) Iron ‘ElectriRx’ man: overground stepping in an exoskeleton combined with noninvasive spinal cord stimulation after paralysis. Conf Proc IEEE Eng Med Biol Soc 2015:1124–1127

    PubMed  Google Scholar 

  • Gallego R, Huizar P, Kudo N, Kuno M (1978) Disparity of motoneurone and muscle differentiation following spinal transection in the kitten. J Physiol 281:253–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardiner PF (2006) Changes in α-motoneuron properties with altered physical activity levels. Exerc Sport Sci Rev 34:54–58

    Article  PubMed  Google Scholar 

  • Gaviria M, Ohanna F (1999) Variability of the fatigue response of paralyzed skeletal muscle in relation to the time after spinal cord injury: mechanical and electrophysiological characteristics. Eur J Appl Physiol Occup Physiol 80:145–153

    Article  CAS  PubMed  Google Scholar 

  • Gerrits HL, De Haan A, Hopman MT, van Der Woude LH, Jones DA et al (1999) Contractile properties of the quadriceps muscle in individuals with spinal cord injury. Muscle Nerve 22:1249–1256

    Article  CAS  PubMed  Google Scholar 

  • Gerrits HL, Hopman MT, Sargeant AJ, de Haan A (2001) Reproducibility of contractile properties of the human paralysed and non-paralysed quadriceps muscle. Clin Physiol 21:105–113

    Article  CAS  PubMed  Google Scholar 

  • Gerrits HL, Hopman MT, Sargeant AJ, Jones DA, De Haan A (2002) Effects of training on contractile properties of paralyzed quadriceps muscle. Muscle Nerve 25:559–567

    Article  CAS  PubMed  Google Scholar 

  • Gerrits HL, Hopman MT, Offringa C, Engelen BG, Sargeant AJ et al (2003) Variability in fibre properties in paralysed human quadriceps muscles and effects of training. Pflugers Arch 445:734–740

    Article  CAS  PubMed  Google Scholar 

  • Giangregorio LM, Hicks AL, Webber CE, Phillips SM, Craven BC et al (2005) Body weight supported treadmill training in acute spinal cord injury: impact on muscle and bone. Spinal Cord 43:649–657

    Article  CAS  PubMed  Google Scholar 

  • Giangregorio LM, Webber CE, Phillips SM, Hicks AL, Craven BC et al (2006) Can body weight supported treadmill training increase bone mass and reverse muscle atrophy in individuals with chronic incomplete spinal cord injury? Appl Physiol Nutr Metab 31:283–291

    Article  PubMed  Google Scholar 

  • Gorgey AS, Shepherd C (2010) Skeletal muscle hypertrophy and decreased intramuscular fat after unilateral resistance training in spinal cord injury: case report. J Spinal Cord Med 33:90–95

    Article  PubMed  PubMed Central  Google Scholar 

  • Grimby G, Broberg C, Krotkiewska I, Krotkiewski M (1976) Muscle fiber composition in patients with traumatic cord lesion. Scand J Rehabil Med 8:37–42

    CAS  PubMed  Google Scholar 

  • Haddad F, Roy RR, Zhong H, Edgerton VR, Baldwin KM (2003a) Atrophy responses to muscle inactivity. II. Molecular markers of protein deficits. J Appl Physiol 95:791–802

    Article  CAS  PubMed  Google Scholar 

  • Haddad F, Roy RR, Zhong H, Edgerton VR, Baldwin KM (2003b) Atrophy responses to muscle inactivity. I. Cellular markers of protein deficits. J Appl Physiol 95:781–790

    Article  CAS  PubMed  Google Scholar 

  • Hager-Ross CK, Klein CS, Thomas CK (2006) Twitch and tetanic properties of human thenar motor units paralyzed by chronic spinal cord injury. J Neurophysiol 96:165–174

    Article  CAS  PubMed  Google Scholar 

  • Harridge SD, Andersen JL, Hartkopp A, Zhou S, Biering-Sorensen F et al (2002) Training by low-frequency stimulation of tibialis anterior in spinal cord-injured men. Muscle Nerve 25:685–694

    Article  PubMed  Google Scholar 

  • Hartkopp A, Harridge SD, Mizuno M, Ratkevicius A, Quistorff B et al (2003) Effect of training on contractile and metabolic properties of wrist extensors in spinal cord-injured individuals. Muscle Nerve 27:72–80

    Article  PubMed  Google Scholar 

  • Henneman E, Olson CB (1965) Relations between structure and function in the design of skeletal muscles. J Neurophysiol 28:581–598

    CAS  PubMed  Google Scholar 

  • Henneman E, Somjen G, Carpenter DO (1965a) Functional significance of cell size in spinal motoneurons. J Neurophysiol 28:560–580

    CAS  PubMed  Google Scholar 

  • Henneman E, Somjen G, Carpenter DO (1965b) Excitability and inhibitability of motoneurons of different sizes. J Neurophysiol 28:599–620

    CAS  PubMed  Google Scholar 

  • Herman R, He J, D'Luzansky S, Willis W, Dilli S (2002) Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured. Spinal Cord 40:65–68

    Article  CAS  PubMed  Google Scholar 

  • Hjeltnes N, Aksnes AK, Birkeland KI, Johansen J, Lannem A et al (1997) Improved body composition after 8 wk of electrically stimulated leg cycling in tetraplegic patients. Am J Physiol 273:R1072–R1079

    CAS  PubMed  Google Scholar 

  • Hochman S, McCrea DA (1994) Effects of chronic spinalization on ankle extensor motoneurons. II. Motoneuron electrical properties. J Neurophysiol 71:1468–1479

    CAS  PubMed  Google Scholar 

  • Jayaraman A, Shah P, Gregory C, Bowden M, Stevens J et al (2008) Locomotor training and muscle function after incomplete spinal cord injury: case series. J Spinal Cord Med 31:185–193

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeon JY, Weiss CB, Steadward RD, Ryan E, Burnham RS et al (2002) Improved glucose tolerance and insulin sensitivity after electrical stimulation-assisted cycling in people with spinal cord injury. Spinal Cord 40:110–117

    Article  CAS  PubMed  Google Scholar 

  • Jiang B, Roy RR, Edgerton VR (1990) Enzymatic plasticity of medial gastrocnemius fibers in the adult chronic spinal cat. Am J Physiol 259:C507–C514

    CAS  PubMed  Google Scholar 

  • Jindrich DL, Joseph MS, Otoshi CK, Wei RY, Zhong H et al (2009) Spinal learning in the adult mouse using the Horridge paradigm. J Neurosci Methods 182:250–254

    Article  PubMed  PubMed Central  Google Scholar 

  • Johanson ME, Lateva ZC, Jaramillo J, Kiratli BJ, McGill KC (2013) Triceps brachii in incomplete Tetraplegia: EMG and dynamometer evaluation of residual motor resources and capacity for strengthening. Top Spinal Cord Inj Rehabil 19:300–310

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim SJ, Roy RR, Zhong H, Suzuki H, Ambartsumyan L et al (2007) Electromechanical stimulation ameliorates inactivity-induced adaptations in the medial gastrocnemius of adult rats. J Appl Physiol 103:195–205

    Article  PubMed  Google Scholar 

  • Kim JA, Roy RR, Kim SJ, Zhong H, Haddad F et al (2010) Electromechanical modulation of catabolic and anabolic pathways in chronically inactive, but neurally intact, muscles. Muscle Nerve 42:410–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kjaer M, Mohr T, Biering-Sorensen F, Bangsbo J (2001) Muscle enzyme adaptation to training and tapering-off in spinal-cord-injured humans. Eur J Appl Physiol 84:482–486

    Article  CAS  PubMed  Google Scholar 

  • Klose KJ, Jacobs PL, Broton JG, Guest RS, Needham-Shropshire BM et al (1997) Evaluation of a training program for persons with SCI paraplegia using the Parastep 1 ambulation system: part 1. Ambulation performance and anthropometric measures. Arch Phys Med Rehabil 78:789–793

    Article  CAS  PubMed  Google Scholar 

  • Krieger SR, Pierotti DJ, Coast JR (2005) Spinal cord injury and contractile properties of the human tibialis anterior. J Sports Sci Med 4:0

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krikorian JG, Guth L, Barrett CP, Donati EJ (1982) Enzyme histochemical changes after transection or hemisection of the spinal cord of the rat. Exp Neurol 76:623–643

    Article  CAS  PubMed  Google Scholar 

  • Lavela SL, Weaver FM, Goldstein B, Chen K, Miskevics S et al (2006) Diabetes mellitus in individuals with spinal cord injury or disorder. J Spinal Cord Med 29:387–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu CW, Chen SC, Chen CH, Chen TW, Chen JJ et al (2007) Effects of functional electrical stimulation on peak torque and body composition in patients with incomplete spinal cord injury. Kaohsiung J Med Sci 23:232–240

    Article  PubMed  Google Scholar 

  • Lotta S, Scelsi R, Alfonsi E, Saitta A, Nicolotti D et al (1991) Morphometric and neurophysiological analysis of skeletal muscle in paraplegic patients with traumatic cord lesion. Paraplegia 29:247–252

    Article  CAS  PubMed  Google Scholar 

  • Mahoney ET, Bickel CS, Elder C, Black C, Slade JM et al (2005) Changes in skeletal muscle size and glucose tolerance with electrically stimulated resistance training in subjects with chronic spinal cord injury. Arch Phys Med Rehabil 86:1502–1504

    Article  PubMed  Google Scholar 

  • Malisoux L, Jamart C, Delplace K, Nielens H, Francaux M et al (2007) Effect of long-term muscle paralysis on human single fiber mechanics. J Appl Physiol 102:340–349

    Article  PubMed  Google Scholar 

  • Martin TP, Stein RB, Hoeppner PH, Reid DC (1992) Influence of electrical stimulation on the morphological and metabolic properties of paralyzed muscle. J Appl Physiol 72:1401–1406

    CAS  PubMed  Google Scholar 

  • Mayer RF, Burke RE, Toop J, Walmsley B, Hodgson JA (1984) The effect of spinal cord transection on motor units in cat medial gastrocnemius muscles. Muscle Nerve 7:23–31

    Article  CAS  PubMed  Google Scholar 

  • Melchiorri G, Andreoli A, Padua E, Sorge R, De Lorenzo A (2007) Use of vibration exercise in spinal cord injury patients who regularly practise sport. Funct Neurol 22:151–154

    PubMed  Google Scholar 

  • Mohr T, Andersen JL, Biering-Sorensen F, Galbo H, Bangsbo J et al (1997) Long-term adaptation to electrically induced cycle training in severe spinal cord injured individuals. Spinal Cord 35:1–16

    Article  CAS  PubMed  Google Scholar 

  • Munson JB, Foehring RC, Lofton SA, Zengel JE, Sypert GW (1986) Plasticity of medial gastrocnemius motor units following cordotomy in the cat. J Neurophysiol 55:619–634

    CAS  PubMed  Google Scholar 

  • Nessler JA, Moustafa-Bayoumi M, Soto D, Duhon JE, Schmitt R (2011) Robot applied stance loading increases hindlimb muscle mass and stepping kinetics in a rat model of spinal cord injury. Conf Proc IEEE Eng Med Biol Soc 2011:4145–4148

    PubMed  Google Scholar 

  • Ollivier-Lanvin K, Lemay MA, Tessler A, Burns AS (2009) Neuromuscular transmission failure and muscle fatigue in ankle muscles of the adult rat after spinal cord injury. J Appl Physiol 107:1190–1194

    Article  PubMed  PubMed Central  Google Scholar 

  • Olsson MC, Kruger M, Meyer LH, Ahnlund L, Gransberg L et al (2006) Fibre type-specific increase in passive muscle tension in spinal cord-injured subjects with spasticity. J Physiol 577:339–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacy PJ, Hesp R, Halliday DA, Katz D, Cameron G et al (1988) Muscle and bone in paraplegic patients, and the effect of functional electrical stimulation. Clin Sci (Lond) 75:481–487

    Article  CAS  Google Scholar 

  • Peckham PH, Mortimer JT, Marsolais EB (1976) Alteration in the force and fatigability of skeletal muscle in quadriplegic humans following exercise induced by chronic electrical stimulation. Clin Orthop Relat Res 114:326–333

    Google Scholar 

  • Petrie MA, Suneja M, Faidley E, Shields RK (2014) A minimal dose of electrically induced muscle activity regulates distinct gene signaling pathways in humans with spinal cord injury. PLoS One 9:e115791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petruska JC, Ichiyama RM, Jindrich DL, Crown ED, Tansey KE et al (2007) Changes in motoneuron properties and synaptic inputs related to step training after spinal cord transection in rats. J Neurosci 27:4460–4471

    Article  CAS  PubMed  Google Scholar 

  • Pierotti DJ, Roy RR, Hodgson JA, Edgerton VR (1994) Level of independence of motor unit properties from neuromuscular activity. Muscle Nerve 17:1324–1335

    Article  CAS  PubMed  Google Scholar 

  • Ragnarsson KT (1988) Physiologic effects of functional electrical stimulation-induced exercises in spinal cord-injured individuals. Clin Orthop Relat Res 233:53–63

    Google Scholar 

  • Rochester L, Barron MJ, Chandler CS, Sutton RA, Miller S et al (1995) Influence of electrical stimulation of the tibialis anterior muscle in paraplegic subjects. 2. Morphological and histochemical properties. Paraplegia 33:514–522

    Article  CAS  PubMed  Google Scholar 

  • Rodgers MM, Glaser RM, Figoni SF, Hooker SP, Ezenwa BN et al (1991) Musculoskeletal responses of spinal cord injured individuals to functional neuromuscular stimulation-induced knee extension exercise training. J Rehabil Res Dev 28:19–26

    Article  CAS  PubMed  Google Scholar 

  • Roy RR, Acosta L Jr (1986) Fiber type and fiber size changes in selected thigh muscles six months after low thoracic spinal cord transection in adult cats: exercise effects. Exp Neurol 92:675–685

    Google Scholar 

  • Roy RR, Baldwin KM, Reggie EV (1991) The plasticity of skeletal muscle: effects of neuromuscular activity. Exerc Sport Sci Rev 19:269–312

    Article  CAS  PubMed  Google Scholar 

  • Roy RR, Talmadge RJ, Hodgson JA, Zhong H, Baldwin KM et al (1998a) Training effects on soleus of cats spinal cord transected (T12–13) as adults. Muscle Nerve 21:63–71

    Article  CAS  PubMed  Google Scholar 

  • Roy RR, Pierotti DJ, Baldwin KM, Zhong H, Hodgson JA et al (1998b) Cyclical passive stretch influences the mechanical properties of the inactive cat soleus. Exp Physiol 83:377–385

    Article  CAS  PubMed  Google Scholar 

  • Roy RR, Talmadge RJ, Hodgson JA, Oishi Y, Baldwin KM et al (1999) Differential response of fast hindlimb extensor and flexor muscles to exercise in adult spinalized cats. Muscle Nerve 22:230–241

    Article  CAS  PubMed  Google Scholar 

  • Roy RR, Zhong H, Hodgson JA, Grossman EJ, Siengthai B et al (2002) Influences of electromechanical events in defining skeletal muscle properties. Muscle Nerve 26:238–251

    Article  PubMed  Google Scholar 

  • Roy RR, Zhong H, Khalili N, Kim SJ, Higuchi N et al (2007a) Is spinal cord isolation a good model of muscle disuse? Muscle Nerve 35:312–321

    Article  CAS  PubMed  Google Scholar 

  • Roy RR, Matsumoto A, Zhong H, Ishihara A, Edgerton VR (2007b) Rat alpha- and gamma-motoneuron soma size and succinate dehydrogenase activity are independent of neuromuscular activity level. Muscle Nerve 36:234–241

    Article  PubMed  Google Scholar 

  • Roy RR, Pierotti DJ, Garfinkel A, Zhong H, Baldwin KM et al (2008) Persistence of motor unit and muscle fiber types in the presence of inactivity. J Exp Biol 211:1041–1049

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy RR, Harkema SJ, Edgerton VR (2012) Basic concepts of activity-based interventions for improved recovery of motor function after spinal cord injury. Arch Phys Med Rehabil 93:1487–1497

    Article  PubMed  Google Scholar 

  • Scremin AM, Kurta L, Gentili A, Wiseman B, Perell K et al (1999) Increasing muscle mass in spinal cord injured persons with a functional electrical stimulation exercise program. Arch Phys Med Rehabil 80:1531–1536

    Article  CAS  PubMed  Google Scholar 

  • Shah PK, Stevens JE, Gregory CM, Pathare NC, Jayaraman A et al (2006) Lower-extremity muscle cross-sectional area after incomplete spinal cord injury. Arch Phys Med Rehabil 87:772–778

    Article  PubMed  Google Scholar 

  • Shields RK (1995) Fatigability, relaxation properties, and electromyographic responses of the human paralyzed soleus muscle. J Neurophysiol 73:2195–2206

    CAS  PubMed  Google Scholar 

  • Shields RK, Dudley-Javoroski S (2006) Musculoskeletal plasticity after acute spinal cord injury: effects of long-term neuromuscular electrical stimulation training. J Neurophysiol 95:2380–2390

    Article  PubMed  PubMed Central  Google Scholar 

  • Shields RK, Dudley-Javoroski S (2007) Musculoskeletal adaptations in chronic spinal cord injury: effects of long-term soleus electrical stimulation training. Neurorehabil Neural Repair 21:169–179

    Article  PubMed  PubMed Central  Google Scholar 

  • Shields RK, Law LF, Reiling B, Sass K, Wilwert J (1997) Effects of electrically induced fatigue on the twitch and tetanus of paralyzed soleus muscle in humans. J Appl Physiol 82:1499–1507

    CAS  PubMed  Google Scholar 

  • Shields RK, Chang YJ, Dudley-Javoroski S, Lin CH (2006) Predictive model of muscle fatigue after spinal cord injury in humans. Muscle Nerve 34:84–91

    Article  PubMed  PubMed Central  Google Scholar 

  • Shik ML, Orlovsky GN (1976) Neurophysiology of locomotor automatism. Physiol Rev 56:465–501

    CAS  PubMed  Google Scholar 

  • Shik ML, Severin FV, Orlovskii GN (1966) Control of walking and running by means of electric stimulation of the midbrain. Biofizika 11:659–666

    CAS  PubMed  Google Scholar 

  • Sloan KE, Bremner LA, Byrne J, Day RE, Scull ER (1994) Musculoskeletal effects of an electrical stimulation induced cycling programme in the spinal injured. Paraplegia 32:407–415

    Article  CAS  PubMed  Google Scholar 

  • Stein RB, Gordon T, Jefferson J, Sharfenberger A, Yang JF et al (1992) Optimal stimulation of paralyzed muscle after human spinal cord injury. J Appl Physiol 72:1393–1400

    CAS  PubMed  Google Scholar 

  • Stewart BG, Tarnopolsky MA, Hicks AL, McCartney N, Mahoney DJ et al (2004) Treadmill training-induced adaptations in muscle phenotype in persons with incomplete spinal cord injury. Muscle Nerve 30:61–68

    Article  PubMed  Google Scholar 

  • Talmadge RJ (2000) Myosin heavy chain isoform expression following reduced neuromuscular activity: potential regulatory mechanisms. Muscle Nerve 23:661–679

    Article  CAS  PubMed  Google Scholar 

  • Talmadge RJ, Roy RR, Caiozzo VJ, Edgerton VR (2002) Mechanical properties of rat soleus after long-term spinal cord transection. J Appl Physiol 93:1487–1497

    Article  PubMed  Google Scholar 

  • Thomas CK, del Valle A (2001) The role of motor unit rate modulation versus recruitment in repeated submaximal voluntary contractions performed by control and spinal cord injured subjects. J Electromyogr Kinesiol 11:217–229

    Article  CAS  PubMed  Google Scholar 

  • Thomas CK, Bakels R, Klein CS, Zijdewind I (2014) Human spinal cord injury: motor unit properties and behaviour. Acta Physiol (Oxf) 210:5–19

    Article  CAS  Google Scholar 

  • Timoszyk WK, de Leon RD, London N, Roy RR, Edgerton VR et al (2002) The rat lumbosacral spinal cord adapts to robotic loading applied during stance. J Neurophysiol 88:3108–3117

    Article  CAS  PubMed  Google Scholar 

  • Wiegner AW, Wierzbicka MM, Davies L, Young RR (1993) Discharge properties of single motor units in patients with spinal cord injuries. Muscle Nerve 16:661–671

    Article  CAS  PubMed  Google Scholar 

  • Yang JF, Stein RB, Jhamandas J, Gordon T (1990) Motor unit numbers and contractile properties after spinal cord injury. Ann Neurol 28:496–502

    Article  CAS  PubMed  Google Scholar 

  • Ziegler MD, Zhong H, Roy RR, Edgerton VR (2010) Why variability facilitates spinal learning. J Neurosci 30:10720–10726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zijdewind I, Thomas CK (2003) Motor unit firing during and after voluntary contractions of human thenar muscles weakened by spinal cord injury. J Neurophysiol 89:2065–2071

    Article  PubMed  Google Scholar 

  • Zijdewind I, Thomas CK (2012) Firing patterns of spontaneously active motor units in spinal cord-injured subjects. J Physiol 590:1683–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Reggie Edgerton Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The American Physiological Society

About this chapter

Cite this chapter

Edgerton, V.R., Roy, R.R. (2016). Physiology of Motor Deficits and the Potential of Motor Recovery After a Spinal Cord Injury. In: Taylor, J. (eds) The Physiology of Exercise in Spinal Cord Injury. Physiology in Health and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4939-6664-6_2

Download citation

Publish with us

Policies and ethics