Skip to main content

Hybrid Functional Electrical Stimulation Exercise for Improved Cardiorespiratory Fitness in SCI

  • Chapter
  • First Online:
The Physiology of Exercise in Spinal Cord Injury

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

Aerobic exercise in persons with spinal cord injury (SCI) is greatly beneficial to health and improves quality of life. However, exercise must meet certain intensity and volume criteria to induce significant benefits across multiple systems. Additionally, more vigorous exercise results in greater benefits, but individuals with SCI can have difficulty achieving high exercise intensities because the paralyzed muscles cannot contribute to overall oxygen consumption. One solution is functional electrical stimulation (FES) exercise, especially hybrid FES exercise involving both innervated upper body and electrically stimulated lower body muscles. This chapter will focus on the acute and chronic responses to FES-cycling and hybrid FES exercise and summarize the advances in application of FES for exercise in SCI. It should be noted that there can be striking differences between the two forms of exercise and the majority of the data indicate if hybrid FES exercise is achievable, this form of exercise is ideal for gains in aerobic capacity in those with SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson KD (2004) Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma 21(10):1371–1383

    Article  PubMed  Google Scholar 

  • Astorino TA, Robergs RA, Ghiasvand F, Marks D, Burns S (2000) Incidence of the oxygen plateau at VO2max during exercise testing to volitional fatigue. Int Electron J 3(4):1–12

    Google Scholar 

  • Barstow TJ, Scremin AM, Mutton DL, Kunkel CF, Cagle TG, Whipp BJ (1996) Changes in gas exchange kinetics with training in patients with spinal cord injury. Med Sci Sports Exerc 28(10):1221–1228

    Article  CAS  PubMed  Google Scholar 

  • Bhambhani Y, Tuchak C, Burnham R, Jeon J, Maikala R (2000) Quadriceps muscle deoxygenation during functional electrical stimulation in adults with spinal cord injury. Spinal Cord 38(10):630–638

    Article  CAS  PubMed  Google Scholar 

  • Binder-Macleod SA, Scott WB (2001) Comparison of fatigue produced by various electrical stimulation trains. Acta Physiol Scand 172(3):195–203

    Article  CAS  PubMed  Google Scholar 

  • Binder-Macleod SA, Snyder-Mackler L (1993) Muscle fatigue: clinical implications for fatigue assessment and neuromuscular electrical stimulation. Phys Ther 73(12):902–910

    CAS  PubMed  Google Scholar 

  • Brurok B, Helgerud J, Karlsen T, Leivseth G, Hoff J (2011) Effect of aerobic high-intensity hybrid training on stroke volume and peak oxygen consumption in men with spinal cord injury. Am J Phys Med Rehabil 90(5):407–414

    Article  PubMed  Google Scholar 

  • Brurok B, Tørhaug T, Leivseth G, Karlsen T, Helgerud J, Hoff J (2012) Effect of leg vascular occlusion on arm cycling peak oxygen uptake in spinal cord-injured individuals. Spinal Cord 50(4):298–302

    Article  CAS  PubMed  Google Scholar 

  • Brurok B, Tørhaug T, Karlsen T, Leivseth G, Helgerud J, Hoff J (2013) Effect of lower extremity functional electrical stimulation pulsed isometric contractions on arm cycling peak oxygen uptake in spinal cord injured individuals. J Rehabil Med 45(3):254–259

    Google Scholar 

  • Chen JJ, Yu NY, Huang DG, Ann BT, Chang GC (1997) Applying fuzzy logic to control cycling movement induced by functional electrical stimulation. IEEE Trans Rehabil Eng 5(2):158–169

    Article  CAS  PubMed  Google Scholar 

  • Davoodi R, Andrews BJ, Wheeler GD, Lederer R (2002) Development of an indoor rowing machine with manual FES controller for total body exercise in paraplegia. IEEE Trans Neural Syst Rehabil Eng 10(3):197–203

    Article  PubMed  Google Scholar 

  • Deley G, Denuziller J, Babault N, Taylor JA (2014) Effects of electrical stimulation pattern on quadriceps isometric force and fatigue in individuals with spinal cord injury. Muscle Nerve

    Google Scholar 

  • Deley G, Denuziller J, Babault N (2015) Functional electrical stimulation: cardiorespiratory adaptations and applications for training in paraplegia. Sports Med 45(1):71–82

    Article  PubMed  Google Scholar 

  • Deley G, Denuziller J, Casillas JM, Babault N (2016) One year of training with FES has impressive beneficial effects in a 36-year-old woman with spinal cord injury. J Spinal Cord Med 2015:1–15

    Google Scholar 

  • Doucet BM, Lam A, Griffin L (2012) Neuromuscular electrical stimulation for skeletal muscle function. Yale J Biol Med 85(2):201–215

    PubMed  PubMed Central  Google Scholar 

  • Duffell L, Donaldson N, Perkins T, Rushton D, Hunt KJ, Kakebeeke TH, Newham D (2008) Long term intensive electrically stimulated cycling by spinal cord injured people; the effect on muscle properties and their relation to power output. Muscle Nerve 38:1304–1311

    Article  PubMed  Google Scholar 

  • Eriksson P1, Löfström L, Ekblom B (1988) Aerobic power during maximal exercise in untrained and well-trained persons with quadriplegia and paraplegia. Scand J Rehabil Med 20(4):141–147

    CAS  PubMed  Google Scholar 

  • Faghri PD, Glaser RM, Figoni SF (1992) Functional electrical stimulation leg cycle ergometer exercise: training effects on cardiorespiratory responses of spinal cord injured subjects at rest and during submaximal exercise. Arch Phys Med Rehabil 73(11):1085–1093

    CAS  PubMed  Google Scholar 

  • Figoni SF, Rodgers MM, Glaser RM, Hooker SP, Feghri PD, Ezenwa BN, Mathews T, Suryaprasad AG, Gupta SC (1990) Physiologic responses of paraplegics and quadriplegics to passive and active leg cycle ergometry. J Am Paraplegia Soc 13(3):33–39

    Article  CAS  PubMed  Google Scholar 

  • Frotzler A, Coupaud S, Perret C, Kakebeeke TH, Hunt KJ, Donaldson N, Eser P (2008) High-volume FES-cycling partially reverses bone loss in people with chronic spinal cord injury. Bone 43:169–176

    Article  PubMed  Google Scholar 

  • Gibbons RS, Stock CG, Andrews BJ, Gall A, Shave RE (2016) The effect of FES-rowing training on cardiac structure and function: pilot studies in people with spinal cord injury. Spinal Cord 54(10):822–829

    Article  CAS  PubMed  Google Scholar 

  • Glaser RM, Figoni SF, Hooker SP, Rodgers MM, Ezenwa BN, Suryaprasad AG, Gupta SC, Mathews T (1989) Efficiency of FNS leg cycle ergometry. Proc Ann Int Conf IEEE Eng Med Biol Soc 3:961–963

    Google Scholar 

  • Goss FL, McDermott A, Robertson RJ (1992) Changes in peak oxygen uptake following computerized functional electrical stimulation in the spinal cord injured. Res Q Exerc Sport 63(1):76–79

    Article  CAS  PubMed  Google Scholar 

  • Grill JH, Peckham PH (1998) Functional neuromuscular stimulation for combined control of elbow extension and hand grasp in C5 and C6 quadriplegics. IEEE Trans Rehabil Eng 6(2):190–199

    Article  CAS  PubMed  Google Scholar 

  • Gurney AB, Robergs RA, Aisenbrey J, Cordova JC, McClanahan L (1998) Detraining from total body exercise ergometry in individuals with spinal cord injury. Spinal Cord 36(11):782–789

    Article  CAS  PubMed  Google Scholar 

  • Hart RL, Kilgore KL, Peckham PH (1998) A comparison between control methods for implanted FES hand-grasp systems. IEEE Trans Rehabil Eng 6(2):208–218

    Article  CAS  PubMed  Google Scholar 

  • Hettinga DM, Andrews BJ (2007) The feasibility of functional electrical stimulation indoor rowing for high-energy training and sport. Neuromodulation 10(3):291–297

    Article  PubMed  Google Scholar 

  • Hettinga DM, Andrews BJ (2008) Oxygen consumption during functional electrical stimulation-assisted exercise in persons with spinal cord injury: implications for fitness and health. Sports Med 38(10):825–838

    Article  PubMed  Google Scholar 

  • Hooker SP, Figoni SF, Rodgers MM, Glaser RM, Mathews T, Suryaprasad AG, Gupta SC (1992) Physiologic effects of electrical stimulation leg cycle exercise training in spinal cord injured persons. Arch Phys Med Rehabil 73(5):470–476

    CAS  PubMed  Google Scholar 

  • Hooker SP, Scremin AME, Mutton DL, Kunkel CF (1995) Cagle gordon. Peak and submaximal physiologic responses following electrical stimulation leg cycle ergometer training. J Rehabil Res Dev 32(4):361–366

    CAS  PubMed  Google Scholar 

  • Hopman MT, Dallmeijer AJ, Snoek G, van der Woude LH (1996) The effect of training on cardiovascular responses to arm exercise in individuals with tetraplegia. Eur J Appl Physiol Occup Physiol 74(1–2):172–179

    Article  CAS  PubMed  Google Scholar 

  • Howley ET, Bassett DR Jr, Welch HG (1995) Criteria for maximal oxgyen uptake review and commentary. Med Sci Sports Exerc 27(9):1292–1301

    Article  CAS  PubMed  Google Scholar 

  • Hunt KJ, Fang J, Saengsuwan J, Grob M, Laubacher M (2012) On the efficiency of FES cycling: a framework and systematic review. Technol Health Care 20(5):395–422

    CAS  PubMed  Google Scholar 

  • Ibitoye MO, Hamzaid NA, Hasnan N, Abdul Wahab AK, Davis GM (2016) Strategies for rapid muscle fatigue reduction during FES exercise in individuals with spinal cord injury: a systematic review. PLoS One 11(2):e0149024

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobs PL, Nash MS, Rusinowski JW (2001) Circuit training provides cardiorespiratory and strength benefits in persons with paraplegia. Med Sci Sports Exerc 33(5):711–717

    Article  CAS  PubMed  Google Scholar 

  • Jung DW, Park DS, Lee BS, Kim M (2012) Development of a motor driven rowing machine with automatic functional electrical stimulation controller for individuals with paraplegia; a preliminary study. Ann Rehabil Med 36(3):379–385

    Article  PubMed  PubMed Central  Google Scholar 

  • Kebaetse MB, Lee SCK, Binder-Macleod SA (2001) A novel stimulation pattern improves performance during repetitive dynamic contractions. Muscle Nerve 24:744–752

    Article  CAS  PubMed  Google Scholar 

  • Kebaetse MB, Turner AE, Binder-Macleod SA (2002) Effects of stimulation frequencies and patterns on performance of repetitive, nonisometric tasks. J Appl Physiol 92:109–116

    PubMed  Google Scholar 

  • Kebaetse MB, Lee SC, Johnston TE, Binder-Macleod SA (2005) Strategies that improve paralyzed human quadriceps femoris muscle performance during repetitive, nonisometric contractions. Arch Phys Med Rehabil 86(11):2157–2164

    Article  PubMed  Google Scholar 

  • Kesar T, Chou LW, Binder-Macleod SA (2008) Effects of stimulation frequency versus pulse duration modulation on muscle fatigue. J Electromyogr Kinesiol 18(4):662–671

    Article  PubMed  Google Scholar 

  • Kjaer M, Pott F, Mohr T, Linkis P, Tornoe P, Secher NH (1999) Heart rate during exercise with leg vascular occlusion in spinal cord injured humans. J Appl Physiol 86(3):806–811

    CAS  PubMed  Google Scholar 

  • Kjaer M, Mohr T, Biering-Sørensen F, Bangsbo J (2001) Muscle enzyme adaptation to training and tapering-off in spinal-cord-injured humans. Eur J Appl Physiol 84(5):482–486

    Article  CAS  PubMed  Google Scholar 

  • Kostov A, Andrews BJ, Popović DB, Stein RB, Armstrong WW (1995) Machine learning in control of functional electrical stimulation systems for locomotion. IEEE Trans Biomed Eng 42(6):541–551

    Article  CAS  PubMed  Google Scholar 

  • Kralj AR, Bajd T (1989) Functional electrical stimulation: standing and walking after spinal cord injury. CRC Press, Boca Raton, FL

    Google Scholar 

  • Krauss JC, Robergs RA, Depaepe JL, Kopriva LM, Aisenbury JA, Anderson MA, Lange EK (1993) Effects of electrical stimulation and upper body training after spinal cord injury. Med Sci Sports Exerc 25(9):1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Kroon JR, Ijzerman M, Chae J, Lankhorst G, Zilvold G (2005) Relation between stimulation characteristics and clinical outcome in studies using electrical stimulation to improve motor control of the upper extremity in stroke. J Rehabil Med 37:65–74

    Article  PubMed  Google Scholar 

  • Long C, Masciarelli V (1963) An electrophysiological splint for the hand. Arch Phys Med Rehabil 44:499–503

    PubMed  Google Scholar 

  • Maggioni MA, Ferratini M, Pezzano A, Heyman JE, Agnello L, Veicsteinas A, Merati G (2012) Heart adaptations to long-term aerobic training in paraplegic subjects: an echocardiographic study. Spinal Cord 50(7):538–542

    Article  CAS  PubMed  Google Scholar 

  • Marsolais EB, Kobetic R (1987) Functional electrical stimulation for walking in paraplegia. J Bone Joint Surg Am 69(5):728–733

    Article  CAS  PubMed  Google Scholar 

  • Mohr T, Andersen JL, Biering-Sørensen F, Galbo H, Bangsbo J, Wagner A, Kjaer M (1997) Long-term adaptation to electrically induced cycle training in severe spinal cord injured individuals. Spinal Cord 35(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Mortimer JT (1981) Motor prostheses. In: Brookshart JM, Mountcastle VB (eds) Handbook of physiology. The nervous system II. American Physiological Society, Bethesda, MD, pp. 155–187

    Google Scholar 

  • Mutton DL, Scremin AM, Barstow TJ, Scott MD, Kunkel CF, Cagle TG (1997) Physiologic responses during functional electrical stimulation leg cycling and hybrid exercise in spinal cord injured subjects. Arch Phys Med Rehabil 78(7):712–718

    Article  CAS  PubMed  Google Scholar 

  • Nash MS, Bilsker MS, Kearney HM, Ramirez JN, Applegate B, Green BA (1995) Effects of electrically-stimulated exercise and passive motion on echocardiographically-derived wall motion and cardiodynamic function in tetraplegic persons. Paraplegia 33(2):80–89

    Article  CAS  PubMed  Google Scholar 

  • Noakes TD (1998) Maximal oxygen uptake: “classical” versus “contemporary” viewpoints: a rebuttal. Med Sci Sports Exerc 30:1381–1398

    CAS  PubMed  Google Scholar 

  • Peckham PH, Knutson JS (2005) Functional electrical stimulation for neuromuscular applications. Annu Rev Biomed Eng 7:327–360

    Article  CAS  PubMed  Google Scholar 

  • Pollack SF, Axen K, Spielholz N, Levin N, Haas F, Ragnarsson KT (1989) Aerobic training effects of electrically induced lower extremity exercises in spinal cord injured people. Arch Phys Med Rehabil 70(3):214–219

    CAS  PubMed  Google Scholar 

  • Qiu S, Alzhab S, Picard G, Taylor JA (2016) Ventilation limits aerobic capacity after functional electrical stimulation row training in high spinal cord injury. Med Sci Sports Exerc 48(6):1111–1118

    Article  PubMed  Google Scholar 

  • Raymond J, Davis GM, Climstein M, Sutton JR (1999) Cardiorespiratory responses to arm cranking and electrical stimulation leg cycling in people with paraplegia. Med Sci Sports Exerc 31(6):822–828

    Article  CAS  PubMed  Google Scholar 

  • Raymond J, Davis GM, van der Plas M (2002) Cardiovascular responses during submaximal electrical stimulation-induced leg cycling in individuals with paraplegia. Clin Physiol Func Imaging 22(2):92–98

    Article  Google Scholar 

  • Scott WB, Lee SC, Johnston TE, Binkley J, Binder-Macleod SA (2007) Effect of electrical stimulation pattern on the force responses of paralyzed human quadriceps muscles. Muscle Nerve 35(4):471–478

    Article  PubMed  Google Scholar 

  • Taylor AW, Mcdonell E, Brassard L (1996) The effect of an arm ergometer training programme on wheelchair subjects. Paraplegia 24:105–114

    Article  Google Scholar 

  • Taylor JA, Picard G, Widrick JJ (2011) Aerobic capacity with hybrid FES rowing in spinal cord injury: comparison with arms-only exercise and preliminary findings with regular training. PM R 3(9):817–824

    Article  PubMed  Google Scholar 

  • Taylor JA, Picard G, Porter A, Morse LR, Pronovost MF, Deley G (2014) Hybrid functional electrical stimulation exercise training alters the relationship between spinal cord injury level and aerobic capacity. Arch Phys Med Rehabil 95(11):2172–2179

    Article  PubMed  PubMed Central  Google Scholar 

  • Thijssen DH, Heesterbeek P, van Kuppevelt DJ, Duysens J, Hopman MT (2005) Local vascular adaptations after hybrid training in spinal cord-injured subjects. Med Sci Sports Exerc 37(7):1112–1118

    Article  PubMed  Google Scholar 

  • Thomas CK, Griffin L, Godfrey S, Ribot-Ciscar E, Butler JE (2003) Fatigue of paralyzed and control thenar muscles induced by variable or constant frequency stimulation. J Neurophysiol 89(4):2055–2064

    Article  PubMed  Google Scholar 

  • Tordi N, Belli A, Mougin F, Rouillon JD, Gimenez M (2001a) The effects of an arm ergometer training programme on wheelchair subjects. Int J Sports Med 22(7):517–524

    Article  CAS  PubMed  Google Scholar 

  • Tordi N, Dugue B, Klupzinski D, Rasseneur L, Rouillon JD, Lonsdorfer J (2001b) Interval training program on a wheelchair ergometer for paraplegic subjects. Spinal Cord 39(10):532–537

    Article  CAS  PubMed  Google Scholar 

  • Van Loan MD, McCluer S, Loftin JM, Boileau RA (1987) Comparison of physiological responses to maximal arm exercise among able-bodied, paraplegics and quadriplegics. Paraplegia 25(5):397–405

    Article  CAS  PubMed  Google Scholar 

  • Verellen J, Vanlandewijck Y, Andrews B, Wheeler GD (2007) Cardiorespiratory responses during arm ergometry, functional electrical stimulation cycling, and two hybrid exercise conditions in spinal cord injured. Disabil Rehabil Assist Technol 2(2):127–132

    Article  PubMed  Google Scholar 

  • Whipp BJ, Wasserman K (1969) Efficiency of muscular work. J Appl Physiol 26:644–648

    CAS  PubMed  Google Scholar 

  • Wilbanks SR, Rogers R, Pool S, Bickel CS (2016) Effects of functional electrical stimulation assisted rowing on aerobic fitness and shoulder pain in manual wheelchair users with spinal cord injury. J Spinal Cord Med

    Google Scholar 

  • Yoshiga CC, Higuchi M (2002) Heart rate is lower during ergometer rowing than during treadmill running. Eur J Appl Physiol 87(2):97–100

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Andrew Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The American Physiological Society

About this chapter

Cite this chapter

Qiu, S., Taylor, J.A. (2016). Hybrid Functional Electrical Stimulation Exercise for Improved Cardiorespiratory Fitness in SCI. In: Taylor, J. (eds) The Physiology of Exercise in Spinal Cord Injury. Physiology in Health and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4939-6664-6_14

Download citation

Publish with us

Policies and ethics