Skip to main content

Autonomic Alterations After SCI: Implications for Exercise Performance

  • Chapter
  • First Online:
The Physiology of Exercise in Spinal Cord Injury

Abstract

The disruption of autonomic pathways after spinal cord injury (SCI) leads to a highly unstable cardiovascular system, with impaired blood pressure and heart rate regulation. In addition to low resting blood pressure, on a daily basis the majority of those with SCI suffer from transient episodes of aberrantly low and high blood pressure (termed orthostatic hypotension and autonomic dysreflexia, respectively). Due to a combination of these autonomic disturbances and a myriad of lifestyle factors, the pernicious process of cardiovascular disease is accelerated after SCI, resulting in increased risk of stroke and heart disease. Unfortunately, these secondary consequences of SCI are only beginning to receive appropriate clinical attention. Immediately after high-level SCI, major cardiovascular abnormalities present in the form of neurogenic shock. After subsiding, new issues related to blood pressure instability arise, including orthostatic hypotension and autonomic dysreflexia. Disruption of autonomic function leads to inappropriate exercise responses often resulting in blunted cardiovascular capacity. After high thoracic or cervical SCI, blood pressure responses to exercise are reduced or absent, while often heart rate cannot rise above that set by the sinoatrial node, which together reduce aerobic performance. Some athletes choose to induce potentially life-threatening episodes of autonomic dysreflexia in order increase blood pressure (termed “boosting”), as low blood pressure is a limiting factor for exercise performance in many people with SCI. Due to our understanding of the capacity of autonomic/cardiovascular disability to impact sport performance, classification of athletes with disability should consider autonomic injury to allow for equality between teams and help obviate the need to induce autonomic dysreflexia to improve performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abboud FM, Thames MD (1983) Interaction of cardiovascular reflexes in circulatory control. In: Handbook of physiology. The cardiovascular system. Peripheral circulation and organ blood flow. American Physiological Society, Bethesda, MD, pp. 675–753

    Google Scholar 

  • Ackery AD, Norenberg MD, Krassioukov A (2007) Calcitonin gene-related peptide immunoreactivity in chronic human spinal cord injury. Spinal Cord 45:678–686

    Article  CAS  PubMed  Google Scholar 

  • Alan N, Ramer LM, Inskip JA, Golbidi S, Ramer MS, Laher I, Krassioukov AV (2010) Recurrent autonomic dysreflexia exacerbates vascular dysfunction after spinal cord injury. Spine J 10:1108–1117

    Article  PubMed  Google Scholar 

  • Anderson KD (2004) Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma 21:1371–1383

    Article  PubMed  Google Scholar 

  • Arnold JMO, Feng Q-P, Delaney GA, Teasell RW (1995) Autonomic dysreflexia in tetraplegic patients: evidence for α-adrenoceptor hyper-responsiveness. Clin Auton Res 5:267–270

    Article  CAS  PubMed  Google Scholar 

  • Barber DB, Rogers SJ, Fredrickson MD, Able AC (2000) Midodrine hydrochloride and the treatment of orthostatic hypotension in tetraplegia: two cases and a review of the literature. Spinal Cord 38:109

    Article  CAS  PubMed  Google Scholar 

  • Bhambhani Y, Mactavish J, Warren S, Thompson WR, Webborn A, Bressan E, De Mello MT, Tweedy S, Malone L, Frojd K, Van De Vliet P, Vanlandewijck Y (2010) Boosting in athletes with high-level spinal cord injury: knowledge, incidence and attitudes of athletes in paralympic sport. Disabil Rehabil 32:2172–2190

    Article  PubMed  Google Scholar 

  • Blackmer J (2003) Rehabilitation medicine: 1. Autonomic dysreflexia. Can Med Assoc J 169:931–935

    Google Scholar 

  • Blauwet CA, Benjamin-Laing H, Stomphorst J, Van de Vliet P, Pit-Grosheide P, Willick SE (2013) Testing for boosting at the Paralympic games: policies, results and future directions. Br J Sports Med 47:832–837

    Article  PubMed  Google Scholar 

  • Brock JA, Yeoh M, McLachlan EM (2006) Enhanced neurally evoked responses and inhibition of norepinephrine reuptake in rat mesenteric arteries after spinal transection. Am J Physiol Heart Circ Physiol 290:H398–H405

    Article  CAS  PubMed  Google Scholar 

  • Burnham R, Wheeler G, Bhambhani Y, Belanger M, Eriksson P (1994) Intentional induction of autonomic dysreflexia among quadriplegic athletes for performance enhancement: efficacy, safety, and mechanism of action. Clin J Sport Med 4:1–10

    Article  Google Scholar 

  • Calaresu FR, Yardley CP (1988) Medullary basal sympathetic tone. Annu Rev Physiol 50:511–524

    Article  CAS  PubMed  Google Scholar 

  • Cameron AA, Smith GM, Randall DC, Brown DR, Rabchevsky AG (2006) Genetic manipulation of intraspinal plasticity after spinal cord injury alters the severity of autonomic dysreflexia. J Neurosci 26:2923–2932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cariga P, Ahmed S, Mathias CJ, Gardner BP (2002) The prevalence and association of neck (coat-hanger) pain and orthostatic (postural) hypotension in human spinal cord injury. Spinal Cord 40:77–82

    Article  CAS  PubMed  Google Scholar 

  • Chang CP, Chen MT, Chang LS (1991) Autonomic hyperreflexia in spinal cord injury patient during percutaneous nephrolithotomy for renal stone: a case report. J Urol 146:1601–1602

    CAS  PubMed  Google Scholar 

  • Chaudhuri R (2003) Autonomic failure. A textbook of clinical disorders of the autonomic nervous system, 4th edition: Edited by Christopher J Mathias and Sir Roger Bannister (pp. 562, pound 70.00). Published by Oxford University Press, Oxford, 2002. ISBN 0 19 262850 X. J Neurol Neurosurg Psychiatry 74:551–551

    Article  PubMed Central  Google Scholar 

  • Claydon VE, Krassioukov AV (2006) Orthostatic hypotension and autonomic pathways after spinal cord injury. J Neurotrauma 23:1713–1725

    Article  PubMed  Google Scholar 

  • Claydon VE, Steeves JD, Krassioukov A (2006a) Orthostatic hypotension following spinal cord injury: understanding clinical pathophysiology. Spinal Cord 44:341–351

    Article  CAS  PubMed  Google Scholar 

  • Claydon VE, Elliott SL, Sheel AW, Krassioukov A (2006b) Cardiovascular responses to vibrostimulation for sperm retrieval in men with spinal cord injury. J Spinal Cord Med 29:207–216

    Article  PubMed  PubMed Central  Google Scholar 

  • Claydon VE, Hol AT, Eng JJ, Krassioukov AV (2006c) Cardiovascular responses and postexercise hypotension after arm cycling exercise in subjects with spinal cord injury. Arch Phys Med Rehabil 87:1106–1114

    Article  PubMed  Google Scholar 

  • Cleophas TJM, Kauw FHW, Bijl C, Meijers J, Stapper G (1986) Effects of beta adrenergic receptor agonists and antagonists in diabetics with symptoms of postural hypotension: a double-blind, placebo-controlled study. Angiology 37:855–862

    Article  CAS  PubMed  Google Scholar 

  • Cragg JJ, Noonan VK, Krassioukov A, Borisoff J (2013) Cardiovascular disease and spinal cord injury: results from a national population health survey. Neurology 81:723–728

    Article  PubMed  PubMed Central  Google Scholar 

  • Curt A, Nitsche B, Rodic B, Schurch B, Dietz V (1997) Assessment of autonomic dysreflexia in patients with spinal cord injury. J Neurol Neurosurg Psychiatry 62:473–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dampney RAL, Horiuchi J, Tagawa T, Fontes MAP, Potts PD, Polson JW (2003) Medullary and supramedullary mechanisms regulating sympathetic vasomotor tone. Acta Physiol Scand 177:209–218

    Article  CAS  PubMed  Google Scholar 

  • Davis GM, Servedio FJ, Glaser RM, Gupta SC, Suryaprasad AG (1990) Cardiovascular responses to arm cranking and FNS-induced leg exercise in paraplegics. J Appl Physiol 69:671–677

    CAS  PubMed  Google Scholar 

  • de Groat WC, Yoshimura N (2006) Mechanisms underlying the recovery of lower urinary tract function following spinal cord injury. Prog Brain Res 152:59–84

    Article  PubMed  CAS  Google Scholar 

  • DeVivo MJ, Krause JS, Lammertse DP (1999) Recent trends in mortality and causes of death among persons with spinal cord injury. Arch Phys Med Rehabil 80:1411–1419

    Article  CAS  PubMed  Google Scholar 

  • Duschek S, Schandry R (2004) Cognitive performance and cerebral blood flow in essential hypotension. Psychophysiology 41:905–913

    Article  PubMed  Google Scholar 

  • Duschek S, Hadjamu M, Schandry R (2007) Enhancement of cerebral blood flow and cognitive performance following pharmacological blood pressure elevation in chronic hypotension. Psychophysiology 44:145–153

    Article  PubMed  Google Scholar 

  • Eigenbrodt ML, Rose KM, Couper DJ, Arnett DK, Smith R, Jones D (2000) Orthostatic hypotension as a risk factor for stroke: The atherosclerosis risk in communities (ARIC) study, 1987–1996. Stroke 31:2307–2313

    Article  CAS  PubMed  Google Scholar 

  • Ekland MB, Krassioukov AV, McBride KE, Elliott SL (2008) Incidence of autonomic dysreflexia and silent autonomic dysreflexia in men with spinal cord injury undergoing sperm retrieval: implications for clinical practice. J Spinal Cord Med 31:33–39

    Article  PubMed  PubMed Central  Google Scholar 

  • Elliott S, Krassioukov A (2006) Malignant autonomic dysreflexia in spinal cord injured men. Spinal Cord 44:386–392

    Article  CAS  PubMed  Google Scholar 

  • Eltorai I, Kim R, Vulpe M, Kasravi H, Ho W (1992) Fatal cerebral hemorrhage due to autonomic dysreflexia in a tetraplegic patient: Case report and review. Paraplegia 30:355–360

    Article  CAS  PubMed  Google Scholar 

  • Fadel PJ, Ogoh S, Keller DM, Raven PB (2003) Recent insights into carotid baroreflex function in humans using the variable pressure neck chamber. Exp Physiol 88:671–680

    Article  PubMed  Google Scholar 

  • Freeman R (2003) Treatment of orthostatic hypotension. Semin Neurol 23:435–442

    Article  PubMed  Google Scholar 

  • Frisbie JH, Steele DJ (1997) Postural hypotension and abnormalities of salt and water metabolism in myelopathy patients. Spinal Cord 35:303–307

    Article  CAS  PubMed  Google Scholar 

  • Fu Q, Shibata S, Hastings JL, Prasad A, Palmer MD, Levine BD (2009) Evidence for unloading arterial baroreceptors during low levels of lower body negative pressure in humans. Am J Physiol Heart Circ Physiol 296:H480–H488

    Article  CAS  PubMed  Google Scholar 

  • Furlan JC, Fehlings MG, Shannon P, Norenberg MD, Krassioukov AV (2003) Descending vasomotor pathways in humans: correlation between axonal preservation and cardiovascular dysfunction after spinal cord injury. J Neurotrauma 20:1351–1363

    Article  PubMed  Google Scholar 

  • Garshick E, Kelley A, Cohen SA, Garrison A, Tun CG, Gagnon D, Brown RA (2005) prospective assessment of mortality in chronic spinal cord injury. Spinal Cord 43:408–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gee CM, West CR, Krassioukov AV (2015) Boosting in elite athletes with spinal cord injury: a critical review of physiology and testing procedures. Sports Med 45:1133–1142

    Article  PubMed  Google Scholar 

  • Giannantoni A, Di Stasi SM, Scivoletto G, Mollo A, Silecchia A, Fuoco U, Vespasiani G, Stasi SD (1998) Autonomic dysreflexia during urodynamics. Spinal Cord 36:756–760

    Article  CAS  PubMed  Google Scholar 

  • Groomes TE, Huang CT (1991) Orthostatic hypotension after spinal cord injury: treatment with fludrocortisone and ergotamine. Arch Phys Med Rehabil 72:56–58

    CAS  PubMed  Google Scholar 

  • Groothuis J, Thijssen D (2010) Angiotensin II contributes to the increased baseline leg vascular resistance in spinal cord-injured individuals. J Hypertens 28(10):2094–2101

    Article  CAS  PubMed  Google Scholar 

  • Hadley M (2002) Guidelines. Blood pressure management after acute spinal cord injury. Neurosurgery 50:S58–S62

    Article  Google Scholar 

  • Hamner JW, Tan CO, Tzeng Y-CC, Taylor JA (2012) Cholinergic control of the cerebral vasculature in humans. J Physiol 590:6343–6352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris P (1994) Self-induced autonomic dysreflexia (‘boosting’) practised by some tetraplegic athletes to enhance their athletic performance. Paraplegia 32:289–291

    Article  CAS  PubMed  Google Scholar 

  • Hebert LE, Scherr PA, Bennett DA, Bienias JL, Wilson RS, Morris MC, Evans DA (2004) Blood pressure and late-life cognitive function change: a biracial longitudinal population study. Neurology 62:2021–2024

    Article  CAS  PubMed  Google Scholar 

  • Heusser K, Tank J, Luft FC, Jordan J (2005) Baroreflex failure. Hypertension 45:834–839

    Article  CAS  PubMed  Google Scholar 

  • Hogan MC, Richardson RS, Kurdak SS (1994) Initial fall in skeletal muscle force development during ischemia is related to oxygen availability. J Appl Physiol 77:2380–2384

    CAS  PubMed  Google Scholar 

  • Hopman MT, Kamerbeek IC, Pistorius M, Binkhorst RA (1993) The effect of an anti-G suit on the maximal performance of individuals with paraplegia. Int J Sport Med 14:357–361

    Article  CAS  Google Scholar 

  • Hopman MT, Dueck C, Monroe M, Philips WT, Skinner JS (1998) Limits to maximal performance in individuals with spinal cord injury. Int J Sports Med 19:98–103

    Article  CAS  PubMed  Google Scholar 

  • Hopman MTE, Groothuis JT, Flendrie M, Gerrits KHL, Houtman S (2002) Increased vascular resistance in paralyzed legs after spinal cord injury is reversible by training. J Appl Physiol 93:1966–1972

    Article  PubMed  Google Scholar 

  • Horowitz D, Kaufmann H (2001) Autoregulatory cerebral vasodilation occurs during orthostatic hypotension in patients with primary autonomic failure. Clin Auton Res 11(6):363–367

    Article  CAS  PubMed  Google Scholar 

  • Houtman S, Oeseburg B, Hughson RL, Hopman MT (2000) Sympathetic nervous system activity and cardiovascular homeostatis during head-up tilt in patients with spinal cord injuries. Clin Aut Res 10:207–212

    Article  CAS  Google Scholar 

  • Hubli M, Gee CM, Krassioukov AV (2014) Refined assessment of blood pressure instability after spinal cord injury. Am J Hypertens 28:173–181

    Article  PubMed  Google Scholar 

  • Illman A, Stiller K, Williams M (2000) The prevalence of orthostatic hypotension during physiotherapy treatment in patients with an acute spinal cord injury. Spinal Cord 38:741

    Article  CAS  PubMed  Google Scholar 

  • International Paralympic Committee (2016) Interview with Dr. Peter Van de Vliet, IPC Medical and Scientific Director [Internet]. www.paralympic.org; https://www.paralympic.org/news/ipc-tightens-rules-clamp-down-boosting

  • Kano M, Moskowitz MA, Yokota M (1991) Parasympathetic denervation of rat pial vessels significantly increases infarction volume following middle cerebral artery occlusion. J Cereb Blood Flow Metab 11:628–637

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann H (1996) Consensus statement on the definition of orthostatic hypotension, pure autonomic failure and multiple system atrophy. Clin Auton Res 6:125–126

    Article  CAS  PubMed  Google Scholar 

  • Kessler KM, Pina I, Green B, Burnett B, Laighold M, Bilsker M, Palomo AR, Myerburg RJ (1986) Cardiovascular findings in quadriplegic and paraplegic patients and in normal subjects. Am J Cardiol 58:525–530

    Article  CAS  PubMed  Google Scholar 

  • Kirshblum S, Waring W (2014) Updates for the international standards for neurological classification of spinal cord injury. Phys Med Rehabil Clin N Am 25:505–517

    Article  PubMed  Google Scholar 

  • Kirshblum SC, House JG, O’Connor KC (2002) Silent autonomic dysreflexia during a routine bowel program in persons with traumatic spinal cord injury: a preliminary study. Arch Phys Med Rehabil 83:1774–1776

    Article  PubMed  Google Scholar 

  • Krassioukov A (2004) Autonomic dysreflexia in acute spinal cord injury: incidence, mechanisms, and management. SCI Nurs 21:215–216

    PubMed  Google Scholar 

  • Krassioukov A (2009) Autonomic function following cervical spinal cord injury. Respir Physiol Neurobiol 169:157–164

    Article  PubMed  Google Scholar 

  • Krassioukov A (2012) Autonomic dysreflexia: Current evidence related to unstable arterial blood pressure control among athletes with spinal cord injury. Clin J Sport Med 22:39–45

    PubMed  Google Scholar 

  • Krassioukov A, Claydon VE (2006) The clinical problems in cardiovascular control following spinal cord injury: an overview. Prog Brain Res 152:223–229

    Article  PubMed  Google Scholar 

  • Krassioukov AV, Weaver LC (1995a) Episodic hypertension due to autonomic dysreflexia in acute and chronic spinal cord-injured rats. Am J Physiol 268:H2077–H2083

    CAS  PubMed  Google Scholar 

  • Krassioukov AV, Weaver LC (1995b) Reflex and morphological changes in spinal preganglionic neurons after cord injury in rats. Clin Exp Hypertens 17(1–2):361–373

    Google Scholar 

  • Krassioukov A, Weaver LC (1996a) Anatomy of the autonomic nervous system. Phys Med Rehabil 10:1–14

    Google Scholar 

  • Krassioukov AV, Weaver LC (1996b) Morphological changes in sympathetic preganglionic neurons after spinal cord injury in rats. Neuroscience 70:211–225

    Article  CAS  PubMed  Google Scholar 

  • Krassioukov A, West C (2014) The role of autonomic function on sport performance in athletes with spinal cord injury. PM R 6:S58–S65

    Article  PubMed  Google Scholar 

  • Krassioukov AV, Bunge RP, Pucket WR, Bygrave MA (1999) The changes in human spinal sympathetic preganglionic neurons after spinal cord injury. Spinal Cord 37:6–13

    Article  CAS  PubMed  Google Scholar 

  • Krassioukov AV, Johns DG, Schramm LP (2002) Sensitivity of sympathetically correlated spinal interneurons, renal sympathetic nerve activity, and arterial pressure to somatic and visceral stimuli after chronic spinal injury. J Neurotrauma 19:1521–1529

    Article  PubMed  Google Scholar 

  • Krassioukov A, Warburton DE, Teasell R, Eng JJ (2009) A Systematic review of the management of autonomic dysreflexia after spinal cord injury. Arch Phys Med Rehabil 90:682–695

    Article  PubMed  PubMed Central  Google Scholar 

  • Krassioukov A, Biering-Sorensen CF, Donovan W, Kennelly M, Kirshblum S, Krogh K, Alexander MS, Vogel L, Wecht J (2012) International Standards to document remaining Autonomic Function after Spinal Cord Injury (ISAFSCI), first edition 2012. Top Spinal Cord Injury Rehabil 18:282–296

    Google Scholar 

  • Krenz N, Weaver L (1998) Sprouting of primary afferent fibers after spinal cord transection in the rat. Neuroscience 85:443–458

    Article  CAS  PubMed  Google Scholar 

  • Krenz NR, Meakin SO, Krassioukov AV, Weaver LC (1999) Neutralizing intraspinal nerve growth factor blocks autonomic dysreflexia caused by spinal cord injury. J Neurosci 19:7405–7414

    CAS  PubMed  Google Scholar 

  • La Rovere MT, Pinna GD, Raczak G (2008) Baroreflex sensitivity: measurement and clinical implications. Ann Noninvas Electrocardiol 13:191–207

    Article  Google Scholar 

  • Lebedev VP, Krasyukov AV, Nikitin SA (1986) Electrophysiological study of sympathoexcitatory structures of the bulbar ventrolateral surface as related to vasomotor regulation. Neuroscience 17:189–203

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Fougere R, Zhou M-W, Nigro MK, Krassioukov AV (2013) Autonomic dysreflexia severity during urodynamics and cystoscopy in individuals with spinal cord injury. Spinal Cord 51:863–867

    Article  CAS  PubMed  Google Scholar 

  • Low DA, da Nóbrega ACL, Mathias CJ (2012) Exercise-induced hypotension in autonomic disorders. Auton Neurosci 171:66–78

    Article  PubMed  Google Scholar 

  • Maiorov DN, Weaver LC, Krassioukov AV (1997a) Relationship between sympathetic activity and arterial pressure in conscious spinal rats. Am J Physiol 272:H625–H631

    CAS  PubMed  Google Scholar 

  • Maiorov DN, Krenz NR, Krassioukov AV, Weaver LC (1997b) Role of spinal NMDA and AMPA receptors in episodic hypertension in conscious spinal rats. Am J Physiol Hear Circ Physiol 273:H1266–H1274

    CAS  Google Scholar 

  • Mathias CJ (1995) Orthostatic hypotension: causes, mechanisms, and influencing factors. Neurology 45:S6–S11

    Article  CAS  PubMed  Google Scholar 

  • Mathias CJ, Bannister R (2002) Autonomic disturbances in spinal cord lesions. In: Autonomic failure: a textbook of clinical disorders of the autonomic nervous system, 4th edn. Oxford University Press, New York

    Google Scholar 

  • Mathias CJ, Frankel HL, Christensen NJ, Spalding JM (1976) Enhanced pressor response to noradrenaline in patients with cervical spinal cord transection. Brain 99:757–770

    Article  CAS  PubMed  Google Scholar 

  • Mayorov DN, Adams MA, Krassioukov AV (2001) Telemetric blood pressure monitoring in conscious rats before and after compression injury of spinal cord. J Neurotrauma 18:727–736

    Article  CAS  PubMed  Google Scholar 

  • Miyatani M, Masani K, Oh PI, Miyachi M, Popovic MR, Craven BC (2009) Pulse wave velocity for assessment of arterial stiffness among people with spinal cord injury: a pilot study. J Spinal Cord Med 32:72–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukand J, Karlin L, Barrs K, Lublin P (2001) Midodrine for the management of orthostatic hypotension in patients with spinal cord injury: a case report. Arch Phys Med Rehabil 82:694–696

    Article  CAS  PubMed  Google Scholar 

  • Murray M (1993) Plasticity in the spinal cord: the dorsal root connection. Restor Neurol Neurosci 5:37–45

    CAS  PubMed  Google Scholar 

  • Murthy G, Hargens AR, Lehman S, Rempel DM (2001) Ischemia causes muscle fatigue. J Orthop Res 19:436–440

    Article  CAS  PubMed  Google Scholar 

  • Nacimiento W, Noth J (1999) What, if anything, is spinal shock? Arch Neurol 56:1033–1035

    Article  CAS  PubMed  Google Scholar 

  • Ogoh S, Fadel PJ, Nissen P, Jans O, Selmer C, Secher NH, Raven PB (2003a) Baroreflex-mediated changes in cardiac output and vascular conductance in response to alterations in carotid sinus pressure during exercise in humans. J Physiol 550:317–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogoh S, Volianitis S, Nissen P, Wray DW, Secher NH, Raven PB (2003b) Carotid baroreflex responsiveness to head-up tilt-induced central hypovolaemia: effect of aerobic fitness. J Physiol 551:601–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogoh S, Yoshiga CC, Secher NH, Raven PB (2006) Carotid-cardiac baroreflex function does not influence blood pressure regulation during head-up tilt in humans. J Physiol Sci 56:227–233

    Article  PubMed  Google Scholar 

  • Phillips WT, Kiratli BJ, Sarkarati M, Weraarchakul G, Myers J, Franklin BA, Parkash I, Froelicher V (1998) Effect of spinal cord injury on the heart and cardiovascular fitness. Curr Probl Cardiol 23:641–716

    Article  CAS  PubMed  Google Scholar 

  • Phillips AA, Cote AT, Bredin SS, Krassioukov AV, Warburton DE (2012a) Aortic stiffness increased in spinal cord injury when matched for physical activity. Med Sci Sports Exerc 44:2065–2070

    Article  PubMed  Google Scholar 

  • Phillips AA, Krassioukov AV, Ainslie P, Warburton DER (2012b) Baroreflex function following spinal cord injury. J Neurotrauma 29:2431–2445

    Article  PubMed  Google Scholar 

  • Phillips AA, Ainslie PN, Krassioukov AV, Warburton DER (2013) Regulation of cerebral blood flow after spinal cord injury. J Neurotrauma 30:1551–1563

    Article  CAS  PubMed  Google Scholar 

  • Phillips AA, Warburton DE, Ainslie PN, Krassioukov AV (2014a) Regional neurovascular coupling and cognitive performance in those with low blood pressure secondary to high-level spinal cord injury: Improved by alpha-1 agonist midodrine hydrochloride. J Cereb Blood Flow Metab 34:794–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips AA, Krassioukov AV, Ainslie PN, Warburton DER (2014b) Perturbed and spontaneous regional cerebral blood flow responses to changes in blood pressure after high level spinal cord injury: the effect of midodrine. J Appl Physiol 116:645–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips AA, Matin N, Frias BB, Zheng MMZ, Jai M, West CR, Dorrance AM, Laher I, Krassioukov AV (2015) Rigid and remodelled: cerebrovascular structure and function after experimental high-thoracic spinal cord transection. J Physiol 15:1177–1188

    Google Scholar 

  • Pine ZM, Miller SD, Alonso JA (1991) Atrial fibrillation associated with autonomic dysreflexia. Am J Phys Med Rehabil 70:271–273

    Article  CAS  PubMed  Google Scholar 

  • Price MJ, Campbell IG (2003) Effects of spinal cord lesion level upon thermoregulation during exercise in the heat. Med Sci Sports Exerc 35:1100–1107

    Article  PubMed  Google Scholar 

  • Ramer LM, van Stolk AP, Inskip JA, Ramer MS, Krassioukov AV (2012) Plasticity of TRPV1-expressing sensory neurons mediating autonomic dysreflexia following spinal cord injury. Front Physiol 3:257

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson BF, Epstein SE, Beiser GD, Braunwald E (1966) Control of heart rate by the autonomic nervous system. Studies in man on the interrelation between baroreceptor mechanisms and exercise. Circ Res 19:400–411

    Article  CAS  PubMed  Google Scholar 

  • Rowley NJ, Dawson EA, Hopman MT, George K, Whyte GP, Thijssen DH, Green DJ (2011) Conduit diameter and wall remodelling in elite athletes and spinal cord injury. Med Sci Sport Exerc 44(5):844–849

    Article  Google Scholar 

  • Schmid A, Huonker M, Stahl F, Barturen JM, König D, Heim M, Lehmann M, Keul J (1998a) Free plasma catecholamines in spinal cord injured persons with different injury levels at rest and during exercise. J Auton Nerv Syst 68:96–100

    Article  CAS  PubMed  Google Scholar 

  • Schmid A, Huonker M, Barturen JM, Stahl F, Schmidt-Trucksäss A, König D, Grathwohl D, Lehmann M, Keul J, Schmidt-Trucksass A, Konig D, Grathwohl D, Lehmann M, Keul J (1998b) Catecholamines, heart rate, and oxygen uptake during exercise in persons with spinal cord injury. J Appl Physiol 85:635–641

    Google Scholar 

  • Schmid A, Schmidt-Trucksäss A, Huonker M, König D, Eisenbarth I, Sauerwein H, Brunner C, Storch MJ, Lehmann M, Keul J (2001) Catecholamines response of high performance wheelchair athletes at rest and during exercise with autonomic dysreflexia. Int J Sports Med 22:2–7

    Article  CAS  PubMed  Google Scholar 

  • Sclater A, Alagiakrishnan K (2004) Orthostatic hypotension. A primary care primer for assessment and treatment. Geriatrics 59:22–27

    PubMed  Google Scholar 

  • Sheel AW, Krassioukov AV, Inglis JT, Elliott SL (2005) Autonomic dysreflexia during sperm retrieval in spinal cord injury: influence of lesion level and sildenafil citrate. J Appl Physiol 99:53–58

    Article  PubMed  Google Scholar 

  • Shibata S, Perhonen M, Levine BD (2010) Supine cycling plus volume loading prevent cardiovascular deconditioning during bed rest. J Appl Physiol 108:1177–1186

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin H-K, Yoo K-M, Chang HM, Caplan LR (1999) Bilateral intracranial vertebral artery disease in the New England medical center posterior circulation registry. Arch Neurol 56:1353–1358

    Article  CAS  PubMed  Google Scholar 

  • Sjostrand T (1953) Volume and distribution of blood and their significance in regulating the circulation. Physiol Rev 33:202–228

    CAS  PubMed  Google Scholar 

  • Squair J, Phillips AA, Krass (2016) Autonomic function as a tool to predict in-competition exercise performance in elite athletes with cervical spinal cord injury: evidence-based recommendations for classification. Unpublished findings

    Google Scholar 

  • Suzuki N, Hardebo JE, Owman C (1990) Origins and pathways of choline acetyltransferase-positive parasympathetic nerve fibers to cerebral vessels in rat. J Cereb Blood Flow Metab 10:399–408

    Article  CAS  PubMed  Google Scholar 

  • Taylor JA, Halliwill JR, Brown TE, Hayano J, Eckberg DL (1995) “Non-hypotensive” hypovolaemia reduces ascending aortic dimensions in humans. J Physiol 483(Pt 1):289–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teasell RW, Arnold JM, Krassioukov A, Delaney GA (2000) Cardiovascular consequences of loss of supraspinal control of the sympathetic nervous system after spinal cord injury. Arch Phys Med Rehabil 81:506–516

    Article  CAS  PubMed  Google Scholar 

  • TenHarkel ADJ, Lieshout JJ, Wieling W (1992) Treatment of orthostatic hypotension with sleeping in the head-up tilt position, alone and in combination with fludrocortisone. J Intern Med 232:139–145

    Article  CAS  Google Scholar 

  • Theisen D (2012) Cardiovascular determinants of exercise capacity in the Paralympic athlete with spinal cord injury. Exp Physiol 97:319–324

    Article  PubMed  Google Scholar 

  • Thijssen DHJ, Steendijk S, Hopman MTE (2009) Blood redistribution during exercise in subjects with spinal cord injury and controls. Med Sci Sports Exerc 41:1249–1254

    Article  PubMed  Google Scholar 

  • Thijssen DHJ, Maiorana AJ, O’Driscoll G, Cable NT, Hopman MTE, Green DJ (2010) Impact of inactivity and exercise on the vasculature in humans. Eur J Appl Physiol 108:845–875

    Article  PubMed  Google Scholar 

  • Tweedy SM, Vanlandewijck YC (2011) International Paralympic Committee position stand—background and scientific principles of classification in Paralympic sport. Br J Sports Med 45:259–269

    Article  CAS  PubMed  Google Scholar 

  • Vale FL, Burns J, Jackson AB, Hadley MN (1997) Combined medical and surgical treatment after acute spinal cord injury: Results of a prospective pilot study to assess the merits of aggressive medical resuscitation and blood pressure management. J Neurosurg 87:239–246

    Article  CAS  PubMed  Google Scholar 

  • Van de Vliet P (2012) Antidoping in paralympic sport. Clin J Sport Med 22:21–25

    PubMed  Google Scholar 

  • Vaziri ND (2003) Nitric oxide in microgravity-induced orthostatic intolerance: relevance to spinal cord injury. J Spinal Cord Med 26:5–11

    Article  CAS  PubMed  Google Scholar 

  • Wan D, Krassioukov AV (2014) Life-threatening outcomes associated with autonomic dysreflexia: a clinical review. J Spinal Cord Med 37:2–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Webborn AD (1999) “Boosting” performance in disability sport. Br J Sports Med 33:74–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wecht JM, Bauman WA (2013) Decentralized cardiovascular autonomic control and cognitive deficits in persons with spinal cord injury. J Spinal Cord Med 36:74–81

    Article  PubMed  PubMed Central  Google Scholar 

  • Wecht JM, Radulovic M, Weir JP, Lessey J, Spungen AM, Bauman WA (2005) Partial angiotensin-converting enzyme inhibition during acute orthostatic stress in persons with tetraplegia. J Spinal Cord Med 28:103–108

    Article  PubMed  Google Scholar 

  • West CR, Krassioukov DAV (2012) Passive hind-limb cycling ameliorates autonomic dysreflexia after T3 spinal cord trascection. In: American spinal injury association annual meeting, Chicago

    Google Scholar 

  • West CR, Mills P, Krassioukov AV (2012a) Influence of the neurological level of spinal cord injury on cardiovascular outcomes in humans: a meta-analysis. Spinal Cord 50:484–492

    Article  CAS  PubMed  Google Scholar 

  • West CR, Campbell IG, Shave RE, Romer LM (2012b) Resting cardiopulmonary function in paralympic athletes with cervical spinal cord injury. Med Sci Sports Exerc 44:323–329

    Article  PubMed  Google Scholar 

  • West CR, Bellantoni A, Krassioukov AV (2013a) Cardiovascular function in individuals with incomplete spinal cord injury: a systematic review. Top Spinal Cord Inj Rehabil 19:267–278

    Article  PubMed  PubMed Central  Google Scholar 

  • West CR, Romer LM, Krassioukov A (2013b) Autonomic function and exercise performance in elite athletes with cervical spinal cord injury. Med Sci Sports Exerc 45:261–267

    Article  PubMed  Google Scholar 

  • West CR, Goosey-Tolfrey VL, Campbell IG, Romer LM (2014a) Effect of abdominal binding on respiratory mechanics during exercise in athletes with cervical spinal cord injury. J Appl Physiol 117:36–45

    Article  PubMed  PubMed Central  Google Scholar 

  • West CR, Gee CM, Voss C, Hubli M, Currie KD, Schmid J, Krassioukov AV (2014b) Cardiovascular control, autonomic function, and elite endurance performance in spinal cord injury. Scand J Med Sci Sports.

    Google Scholar 

  • Wu JC, Chen YC, Liu L, Chen TJ, Huang WC, Cheng H, Tung-Ping S (2012) Increased risk of stroke after spinal cord injury: A nationwide 4-year follow-up cohort study. Neurology 78:1051–1057

    Article  PubMed  Google Scholar 

  • Zhang Y, Guan Z, Reader B, Shawler T, Mandrekar-Colucci S, Huang K, Weil Z, Bratasz A, Wells J, Powell ND, Sheridan JF, Whitacre CC, Rabchevsky AG, Nash MS, Popovich PG (2013) Autonomic dysreflexia causes chronic immune suppression after spinal cord injury. J Neurosci 33:12970–12981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei V. Krassioukov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The American Physiological Society

About this chapter

Cite this chapter

Phillips, A.A., Krassioukov, A.V. (2016). Autonomic Alterations After SCI: Implications for Exercise Performance. In: Taylor, J. (eds) The Physiology of Exercise in Spinal Cord Injury. Physiology in Health and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4939-6664-6_13

Download citation

Publish with us

Policies and ethics