Skip to main content

Role of Exercise in Alleviating Chronic Pain in SCI

  • Chapter
  • First Online:
The Physiology of Exercise in Spinal Cord Injury

Part of the book series: Physiology in Health and Disease ((PIHD))

  • 1190 Accesses

Abstract

Four out of five people with spinal cord injury (SCI) report chronic pain. In general this chronic pain is refractory to conventional treatments. Exercise programs designed to alleviate shoulder pain, a particular subtype of nociceptive pain after SCI, have the strongest evidence for effectiveness. There is weak evidence that long term aerobic exercise can reduce chronic pain intensity in persons with SCI. The two purported mechanisms related to the amelioration of pain by exercise are enhanced descending inhibitory activity and reduced excitatory synaptic transmission, however experimental support for these mechanisms is meager. Finally there seems to be an association between exercise, pain, and mood states which may be related to common mechanisms and requires further study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Almeida C, DeMaman A, Kusuda R et al (2015) Exercise therapy normalizes BDNF upregulation and glial hyperactivity in a mouse model of neuropathic pain. Pain 156:504–513

    Article  CAS  PubMed  Google Scholar 

  • Bement MK, Sluka KA (2005) Low-intensity exercise reverses chronic muscle pain in the rat in a naloxone-dependent manner. Arch Phys Med Rehabil 86:1736–1740

    Article  PubMed  Google Scholar 

  • Boldt I, Eriks-Hoogland I, Brinkhof MW et al (2014) Non-pharmacological interventions for chronic pain in people with spinal cord injury. Cochrane Database Syst Rev 11:CD009177

    Google Scholar 

  • Bryce TN, Biering-Sorensen F, Finnerup NB et al (2012) International spinal cord injury pain classification: part I. Background and description. Spinal Cord 50:413–417

    Article  CAS  PubMed  Google Scholar 

  • Buckelew SP, Conway R, Parker J et al (1998) Biofeedback/relaxation training and exercise interventions for fibromyalgia: a prospective trial. Arthritis Care Res 11:196–209

    Article  CAS  PubMed  Google Scholar 

  • Cardenas DD, Jensen MP (2006) Treatments for chronic pain in persons with spinal cord injury: a survey study. J Spinal Cord Med 29:109–117

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardenas DD, Bryce TN, Shem K et al (2004) Gender and minority differences in the pain experience of people with spinal cord injury. Arch Phys Med Rehabil 85:1774–1781

    Article  PubMed  Google Scholar 

  • Caspersen CJ, Powell KE, Christenson GM (1985) Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep 100:126–131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YW, Li YT, Chen YC et al (2012) Exercise training attenuates neuropathic pain and cytokine expression after chronic constriction injury of rat sciatic nerve. Anesth Analg 114:1330–1337

    Article  CAS  PubMed  Google Scholar 

  • Crane DA, Hoffman JM, Reyes MR (2015) Benefits of an exercise wellness program after spinal cord injury. J Spinal Cord Med 25:1–5

    Article  Google Scholar 

  • Cratsenberg KA, Deitrick CE, Harrington TK et al (2015) Effectiveness of exercise programs for management of shoulder pain in manual wheelchair users with spinal cord injury. J Neurol Phys Ther 39:197–203

    Article  PubMed  Google Scholar 

  • Curtis KA, Tyner TM, Zachary L et al (1999) Effect of a standard exercise protocol on shoulder pain in long-term wheelchair users. Spinal Cord 37:421–429

    Article  CAS  PubMed  Google Scholar 

  • Dearwater SR, LaPorte RE, Cauley JA et al (1985) Assessment of physical activity in inactive populations. Med Sci Sports Exerc 17:651–655

    Article  CAS  PubMed  Google Scholar 

  • Dijkers M, Bryce T, Zanca J (2009) Prevalence of chronic pain after traumatic spinal cord injury: a systematic review. J Rehabil Res Dev 46:13–29

    Article  PubMed  Google Scholar 

  • Ditor DS, Latimer AE, Ginis KA et al (2003) Maintenance of exercise participation in individuals with spinal cord injury: effects on quality of life, stress and pain. Spinal Cord 41:446–450

    Article  CAS  PubMed  Google Scholar 

  • Dunn AL, Trivedi MH, Kampert JB et al (2005) Exercise treatment for depression: efficacy and dose response. Am J Prev Med 28:1–8

    Article  PubMed  Google Scholar 

  • Esquenazi A, Talaty M, Packel A et al (2012) The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil 91:911–921

    Article  PubMed  Google Scholar 

  • Ettinger WH Jr, Burns R, Messier SP et al (1997) A randomized trial comparing aerobic exercise and resistance exercise with a health education program in older adults with knee osteoarthritis. The fitness arthritis and seniors trial (FAST). JAMA 277:25–31

    Article  PubMed  Google Scholar 

  • Finnerup NB, Norrbrink C, Trok K et al (2014) Phenotypes and predictors of pain following traumatic spinal cord injury: a prospective study. J Pain 15:40–48

    Article  PubMed  Google Scholar 

  • Focht BC, Gauvin L, Rejeski WJ (2004) The contribution of daily experiences and acute exercise to fluctuations in daily feeling states among older, obese adults with knee osteoarthritis. J Behav Med 27:101–121

    Article  PubMed  Google Scholar 

  • Fransen M, McConnell S, Bell M (2002) Therapeutic exercise for people with osteoarthritis of the hip or knee. A systematic review. J Rheumatol 29:1737–1745

    PubMed  Google Scholar 

  • Gauvin L, Rejeski WJ, Norris JL et al (1997) The curse of inactivity: failure of acute exercise to enhance feeling states in a community sample of sedentary adults. J Health Psychol 2:509–523

    Article  CAS  PubMed  Google Scholar 

  • Gauvin L, Rejeski WJ, Reboussin BA (2000) Contributions of acute bouts of vigorous physical activity to explaining diurnal variations in feeling states in active, middle-aged women. Health Psychol 19:365–375

    Article  CAS  PubMed  Google Scholar 

  • Ginis KA, Latimer AE, Arbour-Nicitopoulos KP et al (2010) Leisure time physical activity in a population-based sample of people with spinal cord injury. Part I: Demographic and injury-related correlates. Arch Phys Med Rehabil 91:722–728

    Article  PubMed  Google Scholar 

  • Hayden JA, Cartwright JL, Riley RD et al (2012) Exercise therapy for chronic low back pain: protocol for an individual participant data meta-analysis. Syst Rev 1(64):1–l0

    Google Scholar 

  • Heutink M, Post MW, Wollaars MM et al (2011) Chronic spinal cord injury pain: pharmacological and non-pharmacological treatments and treatment effectiveness. Disabil Rehabil 33:433–440

    Article  PubMed  Google Scholar 

  • Hicks AL, Martin KA, Ditor DS et al (2003) Long-term exercise training in persons with spinal cord injury: effects on strength, arm ergometry performance and psychological well-being. Spinal Cord 41:34–43

    Article  CAS  PubMed  Google Scholar 

  • IASP Taxonomy Working Group (1998): IASP Taxonomy-pain terms. http://www.iasp-pain.org/Taxonomy?navItemNumber=576#Peripheralneuropathicpain

  • Jankord R, Jemiolo B (2004) Influence of physical activity on serum IL-6 and IL-10 levels in healthy older men. Med Sci Sports Exerc 36:960–964

    Article  CAS  PubMed  Google Scholar 

  • Kehn M, Kroll T (2009) Staying physically active after spinal cord injury: a qualitative exploration of barriers and facilitators to exercise participation. BMC Public Health 9(168)

    Google Scholar 

  • Kressler J, Thomas CK, Field-Fote EC et al (2014) Understanding therapeutic benefits of overground bionic ambulation: exploratory case series in persons with chronic, complete spinal cord injury. Arch Phys Med Rehabil 95:1878–1887.e4

    Article  PubMed  Google Scholar 

  • Landmark T, Romundstad P, Borchgrevink PC et al (2011) Associations between recreational exercise and chronic pain in the general population: evidence from the HUNT 3 study. Pain 152:2241–2247

    Article  PubMed  Google Scholar 

  • Landmark T, Romundstad PR, Borchgrevink PC et al (2013) Longitudinal associations between exercise and pain in the general population—the HUNT pain study. PLoS One 8:e65279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane R, Ellis B, Watson L et al (2014) Exercise for intermittent claudication. Cochrane Database Syst Rev 7:CD000990

    Google Scholar 

  • Latimer AE, Ginis KA, Hicks AL et al (2004) An examination of the mechanisms of exercise-induced change in psychological well-being among people with spinal cord injury. J Rehabil Res Dev 41:643–652

    Article  PubMed  Google Scholar 

  • Latimer AE, Ginis KA, Craven BC et al (2006) The physical activity recall assessment for people with spinal cord injury: validity. Med Sci Sports Exerc 38:208–216

    Article  PubMed  Google Scholar 

  • Martin Ginis KA, Latimer AE (2007) The effects of single bouts of body-weight supported treadmill training on the feeling states of people with spinal cord injury. Spinal Cord 45:112–115

    Article  CAS  PubMed  Google Scholar 

  • Martin Ginis K, Latimer A, McKecknie K et al (2003) Using exercise to enhance subjective well-being among people with spinal cord injury: the mediating influences of stress and pain. Rehabil Psychol 48:157–164

    Article  Google Scholar 

  • Martins DF, Mazzardo-Martins L, Soldi F et al (2013) High-intensity swimming exercise reduces neuropathic pain in an animal model of complex regional pain syndrome type I: evidence for a role of the adenosinergic system. Neuroscience 234:69–76

    Article  CAS  PubMed  Google Scholar 

  • Mazzardo-Martins L, Martins DF, Marcon R et al (2010) High-intensity extended swimming exercise reduces pain-related behavior in mice: involvement of endogenous opioids and the serotonergic system. J Pain 11:1384–1393

    Article  CAS  PubMed  Google Scholar 

  • McNair D, Lorr M, Droppleman L (1971) Manual for the profile of mood states. Educational and Industrial Testing Service, San Diego, CA

    Google Scholar 

  • Middaugh S, Thomas KJ, Smith AR et al (2013) EMG biofeedback and exercise for treatment of cervical and shoulder pain in individuals with a spinal cord injury: a pilot study. Top Spinal Cord Inj Rehabil 19:311–323

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulroy SJ, Thompson L, Kemp B et al (2011) Strengthening and optimal movements for painful shoulders (STOMPS) in chronic spinal cord injury: a randomized controlled trial. Phys Ther 91:305–324

    Article  PubMed  Google Scholar 

  • Nash MS, van de Ven I, van Elk N et al (2007) Effects of circuit resistance training on fitness attributes and upper-extremity pain in middle-aged men with paraplegia. Arch Phys Med Rehabil 88:70–75

    Article  PubMed  Google Scholar 

  • Nawoczenski DA, Ritter-Soronen JM, Wilson CM et al (2006) Clinical trial of exercise for shoulder pain in chronic spinal injury. Phys Ther 86:1604–1618

    Article  PubMed  Google Scholar 

  • Norrbrink Budh C, Lundeberg T (2004) Non-pharmacological pain-relieving therapies in individuals with spinal cord injury: a patient perspective. Complement Ther Med 12:189–197

    Article  PubMed  Google Scholar 

  • Norrbrink C, Lindberg T, Wahman K et al (2012) Effects of an exercise programme on musculoskeletal and neuropathic pain after spinal cord injury—results from a seated double-poling ergometer study. Spinal Cord 50:457–461

    Article  CAS  PubMed  Google Scholar 

  • Patterson RB, Pinto B, Marcus B et al (1997) Value of a supervised exercise program for the therapy of arterial claudication. J Vascular Surg 25:312–38; discussion 318–319

    Article  CAS  Google Scholar 

  • Petersen AM, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol(1985) 98:1154–1162

    Article  CAS  Google Scholar 

  • Petersen AM, Pedersen BK (2006) The role of IL-6 in mediating the anti-inflammatory effects of exercise. J Physiol Pharmacol 57(Suppl 10):43–51

    PubMed  Google Scholar 

  • Ray CA, Carter JR (2007) Central modulation of exercise-induced muscle pain in humans. J Physiol 585:287–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rejeski WJ, Ettinger WH Jr, Martin K et al (1998) Treating disability in knee osteoarthritis with exercise therapy: a central role for self-efficacy and pain. Arthritis Care Res 11:94–101

    Article  CAS  PubMed  Google Scholar 

  • Rintala DH, Loubser PG, Castro J et al (1998) Chronic pain in a community-based sample of men with spinal cord injury: prevalence, severity, and relationship with impairment, disability, handicap, and subjective well-being. Arch Phys Med Rehabil 79:604–614

    Article  CAS  PubMed  Google Scholar 

  • Shankarappa SA, Piedras-Renteria ES, Stubbs EB Jr (2011) Forced-exercise delays neuropathic pain in experimental diabetes: effects on voltage-activated calcium channels. J Neurochem 118:224–236

    Article  CAS  PubMed  Google Scholar 

  • Siddall PJ, McClelland JM, Rutkowski SB et al (2003) A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain 103:249–257

    Article  PubMed  Google Scholar 

  • Sluka KA, O’Donnell JM, Danielson J et al (2013) Regular physical activity prevents development of chronic pain and activation of central neurons. J Appl Physiol (1985) 114:725–733

    Article  CAS  Google Scholar 

  • Stagg NJ, Mata HP, Ibrahim MM et al (2011) Regular exercise reverses sensory hypersensitivity in a rat neuropathic pain model: role of endogenous opioids. Anesthesiology 114:940–948

    Article  CAS  PubMed  Google Scholar 

  • Van Straaten MG, Cloud BA, Morrow MM et al (2014) Effectiveness of home exercise on pain, function, and strength of manual wheelchair users with spinal cord injury: a high-dose shoulder program with telerehabilitation. Arch Phys Med Rehabil 95:1810–1817.e2

    Article  PubMed  PubMed Central  Google Scholar 

  • van Tulder M, Malmivaara A, Esmail R et al (2000) Exercise therapy for low back pain: a systematic review within the framework of the cochrane collaboration back review group. Spine 25:2784–2796

    Article  PubMed  Google Scholar 

  • Verschuren O, Dekker B, van Koppenhagen C et al (2016) Sedentary behavior in people with spinal cord injury. Arch Phys Med Rehabil 97:173

    Article  PubMed  Google Scholar 

  • Widerstrom-Noga EG, Turk DC (2003) Types and effectiveness of treatments used by people with chronic pain associated with spinal cord injuries: influence of pain and psychosocial characteristics. Spinal Cord 41:600–609

    Article  CAS  PubMed  Google Scholar 

  • Zeilig G, Weingarden H, Zwecker M et al (2012) Safety and tolerance of the ReWalk exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study. J Spinal Cord Med 35:96–101

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas N. Bryce MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The American Physiological Society

About this chapter

Cite this chapter

Bryce, T.N. (2016). Role of Exercise in Alleviating Chronic Pain in SCI. In: Taylor, J. (eds) The Physiology of Exercise in Spinal Cord Injury. Physiology in Health and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4939-6664-6_12

Download citation

Publish with us

Policies and ethics