Skip to main content

Cardiometabolic Syndrome in SCI: The Role of Physical Deconditioning and Evidence-Based Countermeasures

  • Chapter
  • First Online:
The Physiology of Exercise in Spinal Cord Injury

Abstract

Persons with spinal cord injuries and disorders (SCI/D) frequently experience component and coalesced health risks of the cardiometabolic syndrome (CMS). The CMS hazards of overweight/obesity, insulin resistance, hypertension, and dyslipidemia—the latter as depressed high-density lipoprotein cholesterol and elevated triglycerides—are strongly associated with physical deconditioning, which is common after SCI/D and worsens the prognosis for all-cause cardiovascular disease occurring early after SCI/D. Evidence supports a role for physical activity after SCI/D as an effective countermeasure to these risks, and often represents the first-line approach to CMS abatement. This evidence is supported by authoritative guidelines that recommend specific activities, frequencies, and activities of work. In many cases, the most effective exercise programming uses a combination of resistance and endurance maneuvers with limited rest taken between sets. As SCI/D is also associated with food intake that is excessive in calories and saturated fat, more comprehensive lifestyle management incorporating both exercise and nutrition represents a favored approach for overall health management. Irrespective of the interventional strategy, improved surveillance of the population for CMS risks and encouraged incorporation of moderate exercise and nutritional intake by health care professionals may play an important role in preservation of activity, optimal health, and preserved independence throughout the lifespan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.cdc.gov/diabetes/prevention/pdf/curriculum.pdf

    http://www.cdc.gov/diabetes/prevention/recognition/curriculum.htm

References

  • Alam I, Lewis K, Stephens JW, Baxter JN (2007) Obesity, metabolic syndrome and sleep apnoea: all pro-inflammatory states. Obes Rev 8(2):119–127

    Article  CAS  PubMed  Google Scholar 

  • Alberti KG, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15(7):539–553

    Article  CAS  PubMed  Google Scholar 

  • Alberti KG, Zimmet P, Shaw J (2006) Metabolic syndrome—a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet Med 23(5):469–480

    Article  CAS  PubMed  Google Scholar 

  • Ashraf SG, David RG Jr (2007) Prevalence of obesity after spinal cord injury. Top Spinal Cord Inj Rehabil 12:1–7

    Google Scholar 

  • Bakkum AJ, Paulson TA, Bishop NC et al (2015) Effects of hybrid cycle and handcycle exercise on cardiovascular disease risk factors in people with spinal cord injury: a randomized controlled trial. J Rehabil Med 47(6):523–530

    Article  PubMed  Google Scholar 

  • Banerjea R, Sambamoorthi U, Weaver F, Maney M, Pogach LM, Findley T (2008) Risk of stroke, heart attack, and diabetes complications among veterans with spinal cord injury. Arch Phys Med Rehabil 89(8):1448–1453

    Article  PubMed  Google Scholar 

  • Bauman WA, Spungen AM (1994) Disorders of carbohydrate and lipid metabolism in veterans with paraplegia or quadriplegia: a model of premature aging. Metabolism 43(6):749–756

    Article  CAS  PubMed  Google Scholar 

  • Bauman WA, Spungen AM (2000) Metabolic changes in persons after spinal cord injury. Phys Med Rehabil Clin N Am 11(1):109–140

    CAS  PubMed  Google Scholar 

  • Bauman WA, Spungen AM (2008) Coronary heart disease in individuals with spinal cord injury: assessment of risk factors. Spinal Cord 46(7):466–476

    Article  CAS  PubMed  Google Scholar 

  • Bauman WA, Spungen AM, Raza M et al (1992a) Coronary artery disease: metabolic risk factors and latent disease in individuals with paraplegia. Mt Sinai J Med 59(2):163–168

    CAS  PubMed  Google Scholar 

  • Bauman WA, Spungen AM, Zhong YG, Rothstein JL, Petry C, Gordon SK (1992b) Depressed serum high density lipoprotein cholesterol levels in veterans with spinal cord injury. Paraplegia 30(10):697–703

    Article  CAS  PubMed  Google Scholar 

  • Bauman WA, Adkins RH, Spungen AM, Kemp BJ, Waters RL (1998) The effect of residual neurological deficit on serum lipoproteins in individuals with chronic spinal cord injury. Spinal Cord 36(1):13–17

    Article  CAS  PubMed  Google Scholar 

  • Bauman WA, Adkins RH, Spungen AM et al (1999) Is immobilization associated with an abnormal lipoprotein profile? Observations from a diverse cohort. Spinal Cord 37(7):485–493

    Article  CAS  PubMed  Google Scholar 

  • Beltrán-Sánchez H, Harhay MO, Harhay MM, McElligott S (2013) Prevalence and trends of metabolic syndrome in the adult US population, 1999–2010. J Am Coll Cardiol 62(8):697–703

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhambhani Y, Rowland G, Farag M (2005) Effects of circuit training on body composition and peak cardiorespiratory responses in patients with moderate to severe traumatic brain injury. Arch Phys Med Rehabil 86(2):268–276

    Article  PubMed  Google Scholar 

  • Borghouts LB, Keizer HA (2000) Exercise and insulin sensitivity: a review. Int J Sports Med 21(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Bremer AA, Mietus-Snyder M, Lustig RH (2012) Toward a unifying hypothesis of metabolic syndrome. Pediatrics 129(3):557–570

    Article  PubMed  PubMed Central  Google Scholar 

  • Brenes G, Dearwater S, Shapera R, LaPorte RE, Collins E (1986) High density lipoprotein cholesterol concentrations in physically active and sedentary spinal cord injured patients. Arch Phys Med Rehabil 67(7):445–450

    CAS  PubMed  Google Scholar 

  • Buchholz AC, Bugaresti JM (2005) A review of body mass index and waist circumference as markers of obesity and coronary heart disease risk in persons with chronic spinal cord injury. Spinal Cord 43(9):513–518

    Article  CAS  PubMed  Google Scholar 

  • Buchholz AC, Pencharz PB (2004) Energy expenditure in chronic spinal cord injury. Curr Opin Clin Nutr Metab Care 7(6):635–639

    Article  PubMed  Google Scholar 

  • Buchholz AC, Martin Ginis KA, Bray SR et al (2009) Greater daily leisure time physical activity is associated with lower chronic disease risk in adults with spinal cord injury. Appl Physiol Nutr Metab 34(4):640–647

    Article  PubMed  Google Scholar 

  • Carnethon MR, Gulati M, Greenland P (2005) Prevalence and cardiovascular disease correlates of low cardiorespiratory fitness in adolescents and adults. JAMA 294(23):2981–2988

    Article  CAS  PubMed  Google Scholar 

  • Castro JP, El-Atat FA, McFarlane SI, Aneja A, Sowers JR (2003) Cardiometabolic syndrome: pathophysiology and treatment. Curr Hypertens Rep 5(5):393–401

    Article  PubMed  Google Scholar 

  • Chen Y, Henson S, Jackson AB, Richards JS (2006) Obesity intervention in persons with spinal cord injury. Spinal Cord 44(2):82–91

    Article  CAS  PubMed  Google Scholar 

  • Cowan RE, Nash MS (2010) Cardiovascular disease, SCI and exercise: unique risks and focused countermeasures. Disabil Rehabil 32(26):2228–2236

    Article  PubMed  Google Scholar 

  • Cowan RE, Nash MS, Anderson KD (2013) Exercise participation barrier prevalence and association with exercise participation status in individuals with spinal cord injury. Spinal Cord 51(1):27–32

    Article  CAS  PubMed  Google Scholar 

  • Cragg JJ, Stone JA, Krassioukov AV (2012) Management of cardiovascular disease risk factors in individuals with chronic spinal cord injury: an evidence-based review. J Neurotrauma 29(11):1999–2012

    Article  PubMed  Google Scholar 

  • Dallmeijer AJ, van der Woude LH, van Kamp GJ, Hollander AP (1999) Changes in lipid, lipoprotein and apolipoprotein profiles in persons with spinal cord injuries during the first 2 years post-injury. Spinal Cord 37(2):96–102

    Article  CAS  PubMed  Google Scholar 

  • Dandona P, Chaudhuri A, Ghanim H, Mohanty P (2007) Proinflammatory effects of glucose and anti-inflammatory effect of insulin: relevance to cardiovascular disease. Am J Cardiol 99(4A):15B–26B

    Article  CAS  PubMed  Google Scholar 

  • de Groot PC, Hjeltnes N, Heijboer AC, Stal W, Birkeland K (2003) Effect of training intensity on physical capacity, lipid profile and insulin sensitivity in early rehabilitation of spinal cord injured individuals. Spinal Cord 41(12):673–679

    Article  PubMed  Google Scholar 

  • Dearwater SR, LaPorte RE, Robertson RJ, Brenes G, Adams LL, Becker D (1986) Activity in the spinal cord-injured patient: an epidemiologic analysis of metabolic parameters. Med Sci Sports Exerc 18(5):541–544

    Article  CAS  PubMed  Google Scholar 

  • DeMarco VG, Johnson MS, Whaley-Connell AT, Sowers JR (2010) Cytokine abnormalities in the etiology of the cardiometabolic syndrome. Curr Hypertens Rep 12(2):93–98

    Article  CAS  PubMed  Google Scholar 

  • Devillard X, Rimaud D, Roche F, Calmels P (2007) Effects of training programs for spinal cord injury. Ann Readapt Med Phys 50(6):490–498 480–499

    Article  CAS  PubMed  Google Scholar 

  • Diabetes Prevention Program Outcomes Study Research Group, Orchard TJ, Temprosa M et al (2013) Long-term effects of the Diabetes Prevention Program interventions on cardiovascular risk factors: a report from the DPP Outcomes Study. Diabet Med 30(1):46–55

    Article  Google Scholar 

  • D’Oliveira GL, Figueiredo FA, Passos MC, Chain A, Bezerra FF, Koury JC (2014) Physical exercise is associated with better fat mass distribution and lower insulin resistance in spinal cord injured individuals. J Spinal Cord Med 37(1):79–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Duckworth WC, Solomon SS, Jallepalli P, Heckemeyer C, Finnern J, Powers A (1980) Glucose intolerance due to insulin resistance in patients with spinal cord injuries. Diabetes 29(11):906–910

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed MS, Younesian A (2005) Lipid profiles are influenced by arm cranking exercise and training in individuals with spinal cord injury. Spinal Cord 43(5):299–305

    Article  CAS  PubMed  Google Scholar 

  • Feasel SGS (2009) The impact of diet on cardiovascular disease risk in individuals with spinal cord injury. Top Spinal Cord Inj Rehabil 14(3):56–68

    Article  Google Scholar 

  • Franks PW, Ekelund U, Brage S, Wong M-Y, Wareham NJ (2004) Does the association of habitual physical activity with the metabolic syndrome differ by level of cardiorespiratory fitness? Diabet Care 27(5):1187–1193

    Article  Google Scholar 

  • Garber CE, Blissmer B, Deschenes MR et al (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sport Exerc 43(7):1334–1359

    Article  Google Scholar 

  • Gater DR Jr (2007) Obesity after spinal cord injury. Phys Med Rehabil Clin N Am 18(2):333–351

    Google Scholar 

  • Ginis KA, Latimer AE, Arbour-Nicitopoulos KP et al (2010) Leisure time physical activity in a population-based sample of people with spinal cord injury. Part I: Demographic and injury-related correlates. Arch Phys Med Rehabil 91(5):722–728

    Article  PubMed  Google Scholar 

  • Ginis KA, Hicks AL, Latimer AE et al (2011) The development of evidence-informed physical activity guidelines for adults with spinal cord injury. Spinal Cord 49(11):1088–1096

    Article  PubMed  Google Scholar 

  • Gorgey AS, Mather KJ, Cupp HR, Gater DR (2012) Effects of resistance training on adiposity and metabolism after spinal cord injury. Med Sci Sports Exerc 44(1):165–174

    Article  CAS  PubMed  Google Scholar 

  • Groah SL, Nash MS, Ljungberg IH et al (2009) Nutrient intake and body habitus after spinal cord injury: an analysis by sex and level of injury. J Spinal Cord Med 32(1):25–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Grundy SM, Brewer HB Jr, Cleeman JI et al (2004a) Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 109(3):433–438

    Google Scholar 

  • Grundy SM, Cleeman JI, Merz CN et al (2004b) Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. J Am Coll Cardiol 44(3):720–732

    Article  PubMed  Google Scholar 

  • Halle M, Berg A, Baumstark M, Keul J (1999) Association of physical fitness with LDL and HDL subfractions in young healthy men. Int J Sports Med 20(7):464–469

    Article  CAS  PubMed  Google Scholar 

  • Hooker SP, Wells CL (1989) Effects of low- and moderate-intensity training in spinal cord-injured persons. Med Sci Sports Exerc 21(1):18–22

    Article  CAS  PubMed  Google Scholar 

  • Jacobs PL, Nash MS (2004) Exercise recommendations for individuals with spinal cord injury. Sports Med 34(11):727–751

    Article  PubMed  Google Scholar 

  • Jacobs PL, Nash MS, Rusinowski JW (2001) Circuit training provides cardiorespiratory and strength benefits in persons with paraplegia. Med Sci Sports Exerc 33(5):711–717

    Article  CAS  PubMed  Google Scholar 

  • Jacobs PL, Mahoney ET, Nash MS, Green BA (2002) Circuit resistance training in persons with complete paraplegia. J Rehabil Res Dev 39(1):21–28

    PubMed  Google Scholar 

  • Jankowski L, Sullivan S (1990) Aerobic and neuromuscular training: effect on the capacity, efficiency, and fatigability of patients with traumatic brain injuries. Arch Phys Med Rehabil 71(7):500–504

    CAS  PubMed  Google Scholar 

  • Janssen TW, van Oers CA, van Kamp GJ, TenVoorde BJ, van der Woude LH, Hollander AP (1997) Coronary heart disease risk indicators, aerobic power, and physical activity in men with spinal cord injuries. Arch Phys Med Rehabil 78(7):697–705

    Article  CAS  PubMed  Google Scholar 

  • Jeon JY, Weiss CB, Steadward RD et al (2002) Improved glucose tolerance and insulin sensitivity after electrical stimulation-assisted cycling in people with spinal cord injury. Spinal Cord 40(3):110–117

    Article  CAS  PubMed  Google Scholar 

  • Jones LM, Legge M, Goulding A (2004) Factor analysis of the metabolic syndrome in spinal cord-injured men. Metabolism 53(10):1372–1377

    Article  CAS  PubMed  Google Scholar 

  • Kim DI, Lee H, Lee BS, Kim J, Jeon JY (2015) Effects of a 6-week indoor hand-bike exercise program on health and fitness levels in people with spinal cord injury: a randomized controlled trial study. Arch Phys Med Rehabil 96(11):2033–2040

    Article  PubMed  Google Scholar 

  • Krassioukov AV, Weaver LC (1995) Episodic hypertension due to autonomic dysreflexia in acute and chronic spinal cord-injured rats. Am J Physiol 268(5 Pt 2):H2077–H2083

    CAS  PubMed  Google Scholar 

  • Krassioukov AV, Furlan JC, Fehlings MG (2003) Autonomic dysreflexia in acute spinal cord injury: an under-recognized clinical entity. J Neurotraum 20(8):707–716

    Article  Google Scholar 

  • Kressler J, Cowan RE, Bigford GE, Nash MS (2014) Reducing cardiometabolic disease in spinal cord injury. Phys Med Rehabil Clin N Am 25(3):573–604 viii

    Article  PubMed  Google Scholar 

  • LaPorte RE, Brenes G, Dearwater S et al (1983) HDL cholesterol across a spectrum of physical activity from quadriplegia to marathon running. Lancet 1(8335):1212–1213

    Article  CAS  PubMed  Google Scholar 

  • LaPorte RE, Adams LL, Savage DD, Brenes G, Dearwater S, Cook T (1984) The spectrum of physical activity, cardiovascular disease and health: an epidemiologic perspective. Am J Epidemiol 120(4):507–517

    CAS  PubMed  Google Scholar 

  • Levine AM, Nash MS, Green BA, Shea JD, Aronica MJ (1992) An examination of dietary intakes and nutritional status of chronic healthy spinal cord injured individuals. Paraplegia 30(12):880–889

    Article  CAS  PubMed  Google Scholar 

  • Libin A, Tinsley E, Nash M et al (2013) Cardiometabolic risk clustering in spinal cord injury: results of exploratory factor analysis. Top Spinal Cord Inj Rehabil 19(3):183–194

    Article  PubMed  PubMed Central  Google Scholar 

  • Manns PJ, McCubbin JA, Williams DP (2005) Fitness, inflammation, and the metabolic syndrome in men with paraplegia. Arch Phys Med Rehabil 86(6):1176–1181

    Article  PubMed  Google Scholar 

  • Martin Ginis KA, Jorgensen S, Stapleton J (2012) Exercise, and sport for persons with spinal cord injury. PM R 4(11):894–900

    Article  PubMed  Google Scholar 

  • Mohr T, Dela F, Handberg A, Biering-Sorensen F, Galbo H, Kjaer M (2001) Insulin action and long-term electrically induced training in individuals with spinal cord injuries. Med Sci Sports Exerc 33(8):1247–1252

    Article  CAS  PubMed  Google Scholar 

  • Monroe MB, Tataranni PA, Pratley R, Manore MM, Skinner JS, Ravussin E (1998) Lower daily energy expenditure as measured by a respiratory chamber in subjects with spinal cord injury compared with control subjects. Am J Clin Nutr 68(6):1223–1227

    CAS  PubMed  Google Scholar 

  • Mosher PE, Nash MS, Perry AC, LaPerriere AR, Goldberg RB (1998) Aerobic circuit exercise training: effect on adolescents with well- controlled insulin-dependent diabetes mellitus. Arch Phys Med Rehabil 79(6):652–657

    Article  CAS  PubMed  Google Scholar 

  • Myers J, Lee M, Kiratli J (2007) Cardiovascular disease in spinal cord injury: an overview of prevalence, risk, evaluation, and management. Am J Phys Med Rehabil 86(2):142–152

    Article  PubMed  Google Scholar 

  • Myers J, Kiratli BJ, Jaramillo J (2012) The cardiometabolic benefits of routine physical activity in persons living with spinal cord injury. Curr Cardiovasc Risk Rep 6(4):323–330

    Article  Google Scholar 

  • Nash MS (2005) Exercise as a health-promoting activity following spinal cord injury. J Neurol Phys Ther 29(2):87–103 106

    Article  PubMed  Google Scholar 

  • Nash MS, Cowan RE (2010a) Cardiovascular disease, SCI and exercise: unique risks and focused countermeasures, Vol 32

    Google Scholar 

  • Nash MS, Cowan RE (2010b) Cardiovascular risk and exercise after spinal cord injuries In: Spinal cord medicine, Vol II, April 2010 edn. Demos Publications, New York, p 848–858.

    Google Scholar 

  • Nash MS, Gater DR (2007) Exercise to reduce obesity in SCI. Top Spinal Cord Inj Rehabil 12(4):76–93

    Article  Google Scholar 

  • Nash MS, Mendez AJ (2007) A guideline-driven assessment of need for cardiovascular disease risk intervention in persons with chronic paraplegia. Arch Phys Med Rehabil 88(6):751–757

    Article  PubMed  Google Scholar 

  • Nash MS, Jacobs PL, Mendez AJ, Goldberg RB (2001) Circuit resistance training improves the atherogenic lipid profiles of persons with chronic paraplegia. J Spinal Cord Med 24(1):2–9

    Article  CAS  PubMed  Google Scholar 

  • Nash MS, van de Ven I, van Elk N, Johnson BM (2007) Effects of circuit resistance training on fitness attributes and upper-extremity pain in middle-aged men with paraplegia. Arch Phys Med Rehabil 88(1):70–75

    Article  PubMed  Google Scholar 

  • Nash MS, Cowan RE, Kressler J (2012) Evidence-based and heuristic approaches for customization of care in cardiometabolic syndrome after spinal cord injury. J Spinal Cord Med 35(5):278–292

    Article  PubMed  PubMed Central  Google Scholar 

  • National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2002) Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 106(25):3143–3421

    Google Scholar 

  • Pelletier C, de Zepetnek JT, MacDonald M, Hicks A (2015) A 16-week randomized controlled trial evaluating the physical activity guidelines for adults with spinal cord injury. Spinal Cord 53(5):363–367

    Article  CAS  PubMed  Google Scholar 

  • Scelza WM, Kalpakjian CZ, Zemper ED, Tate DG (2005) Perceived barriers to exercise in people with spinal cord injury. Am J Phys Med Rehabil 84(8):576–583

    Article  PubMed  Google Scholar 

  • Spungen AM, Wang J, Pierson RN, Bauman WA (2000) Soft tissue body composition differences in monozygotic twins discordant for spinal cord injury. J Appl Physiol 88(4):1310–1315

    CAS  PubMed  Google Scholar 

  • Tanhoffer RA, Tanhoffer AI, Raymond J, Hills AP, Davis GM (2014) Exercise, energy expenditure, and body composition in people with spinal cord injury. J Phys Act Health 11(7):1393–1400

    Article  PubMed  Google Scholar 

  • The Diabetes Prevention Program (DPP) Research Group (2002) The Diabetes Prevention Program (DPP): description of lifestyle intervention. Diabetes Care 25(12):2165–2171

    Article  Google Scholar 

  • Thompson WR, Gordon NF, Pescatello LS (2010) ACSM’s guidelines for exercise testing and prescription, 9th edn. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  • Unwin N, Shaw J, Zimmet P, Alberti KG (2002) Impaired glucose tolerance and impaired fasting glycaemia: the current status on definition and intervention. Diabet Med 19(9):708–723

    Article  CAS  PubMed  Google Scholar 

  • Vissers M, van den Berg-Emons R, Sluis T, Bergen M, Stam H, Bussmann H (2008) Barriers to and facilitators of everyday physical activity in persons with a spinal cord injury after discharge from the rehabilitation centre. J Rehabil Med 40(6):461–467

    Article  PubMed  Google Scholar 

  • West CR, Crawford MA, Laher I, Ramer MS, Krassioukov AV (2015) Passive hind-limb cycling reduces the severity of autonomic dysreflexia after experimental spinal cord injury. Neurorehabil Neural Repair 30:317–327

    Article  PubMed  Google Scholar 

  • Wildman RP, Muntner P, Reynolds K et al (2008) The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004). Arch Intern Med 168(15):1617–1624

    Article  PubMed  Google Scholar 

  • Wilson PW, D’Agostino RB, Parise H, Sullivan L, Meigs JB (2005) Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 112(20):3066–3072

    Article  CAS  PubMed  Google Scholar 

  • Zlotolow SP, Levy E, Bauman WA (1992) The serum lipoprotein profile in veterans with paraplegia: the relationship to nutritional factors and body mass index. J Am Paraplegia Soc 15(3):158–162

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Nash Ph.D., FACSM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The American Physiological Society

About this chapter

Cite this chapter

Maher, J.L., McMillan, D.W., Nash, M.S. (2016). Cardiometabolic Syndrome in SCI: The Role of Physical Deconditioning and Evidence-Based Countermeasures. In: Taylor, J. (eds) The Physiology of Exercise in Spinal Cord Injury. Physiology in Health and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4939-6664-6_10

Download citation

Publish with us

Policies and ethics