Skip to main content

Unique Evolution of Heterochromatin and Alpha Satellite DNA in Small Apes

  • Chapter
  • First Online:
Evolution of Gibbons and Siamang

Part of the book series: Developments in Primatology: Progress and Prospects ((DIPR))

  • 1007 Accesses

Abstract

Small apes (gibbons and siamangs) exhibit high complexity and large variation in the structure of their chromosomes due to the frequent occurrence of rearrangements. Constitutive heterochromatin (C-heterochromatin) is considered one of the significant factors that cause chromosomal rearrangements and is itself also affected greatly by chromosomal rearrangements. Analysis of chromosomal rearrangements was accelerated by the emergence of fluorescence in situ hybridization (FISH) and chromosome painting techniques. Recent developments in molecular biological methods have further facilitated detailed and quantitative analyses of C-heterochromatin, including accurate nucleotide sequences. This chapter addresses the current knowledge of chromosomal distribution and sequence properties of C-heterochromatin in small apes as revealed by the combination of cytogenetic and molecular biological techniques. Emphasis is placed on alpha satellite DNA, which consists of tandemly repeated sequences contained in the centromere. We first describe two events that have taken place in the small ape genome and are likely to have significance in the genome evolution. We then explore fine structures of small ape chromosomes as clarified by hybridization analyses using alpha satellite DNA as a probe. Each genus or species of small apes shows a unique localization pattern, and comparing these features among species or genera enabled us to trace the evolutionary changes that occurred in the chromosome structures of small apes. We also describe the application of alpha satellite DNA probes to the identification of genus, species, and even parents of hybrid offspring.

To the memory of my late friend, Alan R. Mootnick.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnold ML, Meyer A (2006) Natural hybridization in primates: one evolutionary mechanism. Zoology 109: 261–276

    Google Scholar 

  • Baicharoen S, Arsaithamkul V, Hirai Y, Hara T, Koga A, Hirai H (2012) In situ hybridization analysis of gibbon suggests that amplification of alpha satellite DNA in the telomere region is confined to two of the four genera. Genome 55:809–812

    Article  CAS  PubMed  Google Scholar 

  • Baldini A, Miller DA, Shridhar V, Rocchi M, Miller OJ, Ward DC (1991) Comparative mapping of a gorilla-derived alpha satellite DNA clone on great ape and human chromosomes. Chromosoma 101:109–114

    Article  CAS  PubMed  Google Scholar 

  • Brown JD, Golden D, O’Neill RJ (2008) Methylation perturbation in retroelements within the genome of a Mus interspecific hybrid correlate with double minute chromosome formation. Genomics 91:267–273

    Article  CAS  PubMed  Google Scholar 

  • Brown JD, O’Neill RJ (2009) The mysteries of chromosome evolution in gibbons: methylation is a prime suspect. PLoS Genet 5:e1000501

    Article  PubMed  PubMed Central  Google Scholar 

  • Burt DW, Bruley C, Dunn IC, Jones CT, Ramage A, Law AS, Morrice DR, Paton IR, Smitrh J, Windsor D, Sazanov A, Fries R, Waddington D (1999) The dynamics of chromosome evolution in birds and mammals. Nature 402:411–413

    Article  CAS  PubMed  Google Scholar 

  • Carbone L, Harris RA, Vessere GM, Mootnick AR, Humphray S, Rogers J, Kim SK, Wall JD, Martin D, Juka J, Milosavljievic A, deJong PJ (2009a) Evolutionray breakpoints in the gibbon suggest association between cytosine methylation and karyotype evolution. PLoS Genet 5:e1000538

    Article  PubMed  PubMed Central  Google Scholar 

  • Carbone L, Mootnick AR, Nadler T, Moisson P, Ryder O, Roos C, de Jong PJ (2009b) A chromosomal inversion unique to the northern white-cheeked gibbon. PLoS ONE 4:e4999

    Article  PubMed  PubMed Central  Google Scholar 

  • Carbone L, Harris RA, Mootnick AR, Milosavljevic A, Martin DI, Rocchi M, Capozzi O, Archidiacono N, Konkel MK, Walker JA, Batzer MA, de Jong PJ (2012) Centromere remodeling in leuconedys (Hylobatidae) by a new transposable element unique to the gibbons. Genome Biol Evol 4:648–658

    Article  CAS  PubMed  Google Scholar 

  • Couturier J, Lernould JM (1991) Karyotypic study of four gibbons forms provisionally considered as subspecies of Hylobates (Nomascus) concolor (Primates, Hylabtidae). Folia Primatol 56:95–104

    Article  CAS  PubMed  Google Scholar 

  • Haaf T, Willard HF (1998) Orangutan alpha-satellite monomers are closely related to the human consensus sequence. Mamm Genome 9:440–447

    Article  CAS  PubMed  Google Scholar 

  • Hara T, Hirai Y, Jahan I, Hirai H, Koga A (2012) Tandem repeat sequences evolutionarily related to SVA-type retrotransposons are expanded in the centromere region of the western gibbon, a small ape. J Hum Genet 57:760–765

    Article  CAS  PubMed  Google Scholar 

  • Hirai H, Hirai Y, Domae H, Kirihara Y (2007) A most distant intergeneric hybrid offspring (Larcon) of lesser apes, Nomascus leucogenys and Hylobates lar. Hum Genet 122:477–483

    Article  PubMed  Google Scholar 

  • Hirai H, Mootnick AR, Takenaka O, Suryobroto B, Mouri T, Kamanaka Y, Katoh A, Kimura N, Katoh A, Maeda N (2003) Genetic mechanism and property of a whole-arm translocation (WAT) between chromosomes 8 and 9 of agile gibbons (Hylobates agilis). Chromosome Res 11:37–50

    Article  CAS  PubMed  Google Scholar 

  • Hirai H, Wijayanto H, Tanaka H, Mootnick AR, Hayano A, Perwitasari-Farajallah D, Iskandriati D, Sajuthi D (2005) A whole-arm translocation (WAT8/9) separating Sumatran and Bornean agile gibbons, and its evolutionary features. Chromosome Res 13:123–133

    Article  CAS  PubMed  Google Scholar 

  • Ikeno M, Masumoto H, Okazaki T (1994) Distribution of CENP-B boxes reflected in CREST centromere antigenic sites on long-range alpha-satellite DNA arrays of human chromosome 21. Hum Mol Genet 3:1245–1257

    Article  CAS  PubMed  Google Scholar 

  • John B (1988) The biology of heterochromatin. In: Verma RS (ed) Heterochromatin: Molecular and structural aspects. Cambridge University Press, Cambridge, pp 1–147

    Google Scholar 

  • Koehler U, Bigoni F, Weinberg J, Stanyon R (1995) Genomic reorganization in the concolor gibbon (Hylobates concolor) revealed by chromosome painting. Genomics 30:287–292

    Article  CAS  PubMed  Google Scholar 

  • Koga A, Hirai Y, Hara T, Hirai H (2012) Repetitive sequences originating from the centromere constitute large-scale hetgerochromatin in the telomere region in the siamang, a small ape. Heredity 109:180–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maio JJ (1970) DNA strand reassociation and polyribonucleotide binding in the African green monkey, Cercopithecus aethiops. J Mol Biol 56:579–595

    Article  Google Scholar 

  • Marshall J, Sugardjito J (1986) Gibbon systematics. In: Ford SM, Swindler DR, Erwin J (eds) Comparative primate biology, vol 1., Systematics, evolution, and anatomyAR Liss, New York, pp 137–185

    Google Scholar 

  • Masumoto H, Masukata H, Muro Y, Nozaki N, Okazaki T (1989) A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol 109:1963–1973

    Article  CAS  PubMed  Google Scholar 

  • Misceo D, Capozzi O, Roberto R, Dell’Oglio MP, Rocchi M, Stanyon R, Archidiacono N (2008) Tacking the complex flow of chromosome rearrangements from the Hominoidea ancestor to extant Hylobates and Nomacus gibbons by high-resolution synteny mapping. Genome Res 18:1530–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller S, Hollatz M, Wienberg J (2003) Chromosomal phylogeny and evolution of gibbons (Hylobatidae). Hum Genet 113:493–501

    Article  PubMed  Google Scholar 

  • Musich PR, Brown FL, Maio JJ (1980) Highly repetitive component alpha and related alphoid DNAs in man and monkeys. Chromosoma 80:331–348

    Article  CAS  PubMed  Google Scholar 

  • Myers RH, Shafer DA (1979) Hybrid ape offspring of a mating of gibbon and siamang. Science 205:308–310

    Article  CAS  PubMed  Google Scholar 

  • O’Neill RI, O’Neill MJ, Graves JA (1998) Undermethylation associated with retroelement activation and chromosome remodeling in an interspecific mammalian hybrid. Nature 393:68–72

    Article  PubMed  Google Scholar 

  • Ostertag EM, Goodier JL, Zhang Y, Kazazian HH (2003) SVA elements are nonautonomous retrotransposons that cause disease in humans. Am J Hum Genet 73:1444–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanyon R, Sineo L, Chiarelli B, Camperio-Ciani A, Haimoff AR, Mootnick EH, Sutarman DRH (1987) Banded karyotypes of the 44-chromosome gibbons. Folia Primatol 48:56–64

    Article  Google Scholar 

  • Taniguchi-Ikeda M, Kobayashi K, Kanagawa M, Yu CC, Mori K, Oda T, Kuga A, Kurahashi H, Akman HO, DiMauro S, Kaji R, Yokota T, Takeda S, Toda T (2011) Pathogenic exon-trapping by SVA retrotransposon and rescue in Fukuyama muscular dystrophy. Nature 478:127–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terada S, Hirai Y, Hirai H, Koga A (2013) Higher-order repeat structure in alpha satellite DNA is an attribute of hominoids rather than hominids. J Hum Genet 58:752–754

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Xing J, Grover D, Hedges DJ, Han K, Walker JA, Batzer MA (2005) SVA elements: a hominid-specific retroposon family. J Mol Biol 354:994–1007

    Article  CAS  PubMed  Google Scholar 

  • Waye JS, England SB, Willard HF (1987) Genomic organization of alpha satellite DNA on human chromosome 7: evidence for two distinct alphoid domains on a single chromosome. Mol Cell Biol 7:349–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willard HF (1985) Chromosome-specific organization of human alpha satellite DNA. Am J Hum Genet 37:524–532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willard HF, Waye JS (1987) Chromosome-specific subsets of human alpha satellite DNA: analysis of sequence divergence within and between chromosomal subsets and evidence for an ancestral pentameric repeat. J Mol Evol 25:207–214

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

For the use of samples in our original investigations, we are grateful to the staff members of the Primate Research Institute, Kyoto University, Japan, the Zoological Park Organization, Thailand, and the WildTeam Cosmos Center, Bangladesh. The original studies were supported by the Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (24370098 to AK; 22247037 and 24255009 to HH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirohisa Hirai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koga, A., Hirai, H. (2016). Unique Evolution of Heterochromatin and Alpha Satellite DNA in Small Apes. In: Reichard, U., Hirai, H., Barelli, C. (eds) Evolution of Gibbons and Siamang. Developments in Primatology: Progress and Prospects. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-5614-2_6

Download citation

Publish with us

Policies and ethics