Skip to main content

Selective Value of Characteristic Size Parameters in Hylobatids. A Biomechanical Approach to Small Ape Size and Morphology

  • Chapter
  • First Online:
Evolution of Gibbons and Siamang

Abstract

Small apes of the family Hylobatidae are with 5–8 kg and 10–12 kg (siamangs) within the size range of many arboreal simian primates and at the upper size limit of extant prosimians. On the other hand, hylobatids are much smaller than their close relatives the large-bodied African apes and orangutans where even females weigh three times as much as a siamang or more, not to speak of the much larger body sizes of great ape males. Among living apes, hylobatids also seem to be morphologically more specialized compared to other hominoids, which raises the question if biomechanical reasons can explain hylobatids’ special morphological traits. Body size is best described as body mass, but several length measurements are also highly informative of the hylobatid morphotype. Three sources were used in this chapter: (i) published observations of postural behavior, (ii) other authors’ and the authors’ own dissections and measurements, and (iii) knowledge of mechanical conditions and physical laws that govern posture and ideomotoric movement as well as locomotion in animals. By applying physical laws, attempts are made to pin down selective pressures that act on the body and give it its characteristic shape and size. Biomechanical formulae were developed to show the selective advantages of size-related traits. We suggest that characteristics of the arboreal habitat and conditions of substrates keep body size at limits. Bending rigidity of twigs is much less than their tensile strength, and therefore suspension below branches allows fairly large, flightless animals access to resources in the periphery of trees. Suspension by the forelimbs permits maintaining an upright body posture, and arm-swinging is a useful, energy-saving mode of locomotion. The famous deep cleft between digit rays I and II of hylobatid hands allows seizing bigger stems or branches or thicker bundles of thin twigs than would be possible without the deep cleft trait. Moreover, the narrow shape of the hand allows increasing compression between seized substrate and the hand so that friction does not decrease with hand length. Length of the forelimb in pendulous progression yields high speed at low energy expenditure and forelimb length makes slapping with the hand a powerful, dangerous threat in agonistic encounters. During feeding, the length of the forelimb determines the ‘feeding envelope’, which grows by the third power of arm length. Longer-armed animals need to shift their feeding position less frequently than shorter-armed animals and overall they need fewer changes of feeding stations to exploit the same volume as an animal with a shorter forelimb length. These features associated with long arms contribute to safety and allow saving energy. There are, however, limits to forelimb elongation. While the limiting factor ‘support strength’ can only be determined empirically, necessary muscle forces associated with longer forelimbs can be calculated. The greatest forces between substrate and animal occur during acceleration and especially deceleration of the body or its parts, and any increase of the required muscle force also entails an increase in weight, not only of the muscle but also of supporting bones, which leads to higher forces operating between substrate and body. The insights gained from a biomechanical perspective to understand the hylobatid morphotype and its functioning in a complex, three-dimensional arboreal environment are interpreted as selective advantages/disadvantages during hylobatid evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arms A, Voges D, Preuschoft H, Fischer M (2002) Arboreal locomotion in small New-World monkeys. In: Okada M, Preuschoft H (eds) Arboreal locomotor adaptation in primates and its relevance to human evolution. Zeitschrift für Morphologie und Anthropologie, Schweizerbart, Stuttgart, pp 243–263

    Google Scholar 

  • Avis V (1962) Brachiation: the crucial issue for man’s ancestry. Southwestern J Anthrop 18:119–148

    Article  Google Scholar 

  • Bertram JEA (2004) New perspectives on brachiation mechanics. Yearb Phys Anthropol 47:100–117

    Google Scholar 

  • Bertram JEA and Chang YH (2001) Mechanical energy oscillations of two brachiation gaits: Measurement and simulation. Am J Phys Anthropol 115:319–326

    Google Scholar 

  • Biegert J (1961) Volarhaut der Hände und Füsse. In: Hofer H, Schultz AH, Starck D (eds) Primatologia II, part 1. Karger, Basel and New York, 3/1–3/326

    Google Scholar 

  • Bramblett CA (1967) Pathology of the Darajani baboon. Amer J Phys Anthrop 26:331–340

    Article  CAS  PubMed  Google Scholar 

  • Buck C, Bär H (1993) Investigations on the biomechanical significance of dermatoglyphic ridges. In: Preuschoft H, Chivers DJ (eds) Hands of primates. Springer, New York, Wien, pp 285–306

    Chapter  Google Scholar 

  • Buikstra JA (1975) Healed fractures in Macaca mulatta: age, sex and symmetry. Folia Primatol 23:140–148

    Article  CAS  PubMed  Google Scholar 

  • Carbone L, Harris RA, Gnerre S, Veeramah KR, Lorente-Galdos B, Huddleston J, Meyer TJ, Herrero J, Roos C, Aken B, Anaclerio F, Archidiacono N, Baker C, Barrell D, Batzer MA, Bea K, Blancher A, Bohrson CL, Brameier M, Campbell MS, Capozzi O, Casola C, Chiatante C, Cree A, Damert A, de Jong PJ, Dumas L, Fernandez-Callejo M, Flicek P, Fuchs NV, Gut I, Gut M, Hahn MW, Hernandez-Rodriguez J, Hillier LW, Hubley R, Ianc B, Izsva´k Z, Jablonski NJ, Johnstone LM, Karimpour-Fard A, Konkel MK, Kostka D, Lazar NH, Lee SL, Lewis LR, Liu Y, Locke DP, Mallick S, Mendez FL, Muffato M, Nazareth LV, Nevonen KA, O’Bleness M, Ochis C, Odom DT, Pollard KS, Quilez J, Reich D, Rocchi M, Schumann GG, Searle S, Sikela JM, Skollar G, Smit A, Sonmez K, ten Hallers B, Terhune E, Thomas GWC, Ullmer B, Ventura M, Walker JA, Wall JD, Walter L, Ward MC, Wheelan SJ, Whelan CW, White S, Wilhelm LJ, Woerner AE, Yandell M, Zhu B, Hammer MF, Marques-Bonet T, Eichler EE, Fulton L, Fronick C, Muzny DM, Warren WC, Worley KC, Rogers J, Wilson RK, Gibbs RA (2014) Gibbon genome and the fast karyotype evolution of small apes. Nature 513:195–201

    Google Scholar 

  • Cartmill M (1974) Pads and claws in arboreal locomotion. In: Jenkins P (ed) Primate locomotion. Academic Press, New York, pp 45–83

    Chapter  Google Scholar 

  • Cartmill M (1985) Climbing. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology. Harvard University Press, Cambridge, MA, pp 73–88

    Google Scholar 

  • Carpenter CR (1940) A field study in Siam of the behavior and social relations of the gibbon (Hylobates lar). Comp Psychol Monogr 16:38–206

    Google Scholar 

  • Carpenter CR (1976) Suspensory behaviour of gibbons Hylobates lar. Gibbon and siamang 4:167–218

    Google Scholar 

  • Chang YH, Bertram JE, Ruina A (1997) A dynamic force and moment analysis system for brachiation. J Exp Biol 200:3013–3020

    Google Scholar 

  • Chang YH, Bertram JEA, Lee DV (2000) External forces and torques generated by the brachiating white-handed gibbon (H. lar). Am J Phys Anthropol 113:201–216

    Google Scholar 

  • Channon AJ, Günther MM, Crompton RH, d’Aout K, Preuschoft H, Vereeke E (2011) The effect of substrate compliance on the mechanics of gibbon leaps. J Exp Biol 214:687–696

    Google Scholar 

  • Chivers DJ (1984) Feeding and ranging in gibbons. In: Preuschoft H, Chivers DJ, Brockelman WY, Creel N (eds) The lesser apes. Edinburgh University Press, Edinburgh, pp 267–281

    Google Scholar 

  • Clauss, M (2011) Sauropod Biology and the evolution of gigantism: what do we know. In: Klein N, Remes K, Gee CT, Sander M (eds) Biology of the Sauropod Dinosaurs Indiana University Press, Bloomington, pp. 3–7

    Google Scholar 

  • Creel N, Preuschoft H (1971) Hominoid taxonomy. A canonical analysis of cranial dimensions. In: Proceeding of the 3rd international congress of primatology, Zürich 1970, vol 1. Karger-Verlag, Basel, pp 79–90

    Google Scholar 

  • Creel N, Preuschoft H (1976) Cranial morphology of the lesser apes. A multivariate statistical study. In: Rumbaugh DM (ed) Gibbon and Siamang, vol 4. Karger, Basel, pp 219–303

    Google Scholar 

  • Creel N, Preuschoft H (1984) Systematics of the lesser apes. A quantitative taxonomic analysis of craniometric and other variables. In: Preuschoft H, Chivers DJ, Brockelman WY, Creel N (eds) The lesser apes. Edinburgh University Press, Edinburgh, pp 562–613

    Google Scholar 

  • Crompton RH, Li Y, Thorpe SK, Wang WJ, Savage R, Payne R et al (2003) The biomechanical evolution of erect bipedality. Courier Forschungs-Institut Senckenberg 243:115–126

    Google Scholar 

  • Demes B, Preuschoft H (1984) Die biomechanische Bedeutung der Armlänge und der Körpermasse für die hangelnde Fortbewegungsweise. Z Morph Anthropol 74:261–274

    CAS  Google Scholar 

  • Dubbel H (1981) Taschenbuch für den Maschinenbau. Springer, Berlin

    Google Scholar 

  • Fei H, Ma C, Bartlett TQ, Dai R, Xiao W, Fan P (2015) Feeding postures of Cao Vit gibbons (Nomascus nasutus) living in a low-canopy Karst forest. Int J Primatol 36:1036–1054

    Article  Google Scholar 

  • Fleagle JG (1974) The dynamics of the brachiating siamang (Symphalangus syndactylus). Nature 248:259–260

    Google Scholar 

  • Fleagle JG (1976) Locomotin and posture of the Malayan siamang and implications for hominid Evolution. Folia primatologica 26:245–269

    Google Scholar 

  • Fleagle JD (1984) Are there any fossil gibbons? In: Preuschoft H, Chivers DJ, Brockelman WY, Creel N (eds) The lesser apes. Edinurgh University press, Edinburg, pp 4431–4447

    Google Scholar 

  • Fleagle JG and Mittermaier RA (1980) Locomotor behaviour, body size, and comparative ecology of seven Surinam monkeys. Am J Phys Anthropol 52:301–314

    Google Scholar 

  • Frisch JE (1973) The hylobatid dentition. In: DM Rumbaugh (ed) Gibbon and Siamang, vol 4, Karger, Basel, pp 56–95

    Google Scholar 

  • Grand TI (1972) A mechanical interpretation of terminal branch feeding. J Mammal 53:198–201

    Article  Google Scholar 

  • Günther MM (1989) Funktionsmorphologische Untersuchungen zum Sprungverhalten mehrerer Halbaffen. Dissertation, Freie Universität Berlin

    Google Scholar 

  • Günther MM, Boesch C (1993) Energetic cost of nut-cracking behaviour in wild chimpanzees. In: Preuschoft H, Chivers DJ (eds) Hands of primates. Springer, Wien, pp 10–132

    Google Scholar 

  • Harrison T (2016) The fossil record and evolutionary history of hylobatids. In: Reichard UH, Hirohisa H, Barelli C (eds) Evolution of gibbons and siamang. Springer, New York, pp 91–110

    Google Scholar 

  • Hollihn U (1984) Morphology, selective advantages and phylogeny. In: Preuschoft H, Chivers DJ, Brockelman WY, Creel N (eds) The lesser apes. Edinburgh University Press, Edinburgh, pp 85–95

    Google Scholar 

  • Ishida H, Kimura T, Okada M, Yamasaki N (1984) Kinesiological aspects of bipedal walking in gibbons. In: Preuschoft H, Chivers DJ, Brockelman WY, Creel N (eds) The lesser apes. Edinburgh University Press, Edinburgh, pp 135–145

    Google Scholar 

  • Ishida H, Jouffroy FK, Nakano Y (1990) Comparative dynamics of pronograde and upside-down horizontal quadrupedalism in the slow loris (Nycticebus coucang). In: Jouffroy FK, Stack HH, Niemitz C (eds) Gravity, posture and locomotion in primates. Il Sedicesimo, Firenze, pp 209–220

    Google Scholar 

  • Isler K (2002) Characteristics of vertical climbing in gibbons. Evol Anthropol 11:49–52

    Article  Google Scholar 

  • Isler K (2003) 3D-Kinematics of vertical climbing in hominoids. Dissertation, Universität Zürich

    Google Scholar 

  • Jouffroy FK, Petter A (1990) Gravity- related kinematic changes in lorisine horizontal locomotion in relation to position of the body. In: Jouffroy FK, Stack HH, Niemitz C (eds) Gravity, posture and locomotion in primates. Il Sedicesimo, Firenze, pp 199–208

    Google Scholar 

  • Jouffroy FK, Stern JT (1990) Telemetered EMG-stuy of the antigravity versus propulsive actions of the knee and elbow muscles in the slow loris (Nycticebus coucang). In: Jouffroy FK, Stack HH, Niemitz C (eds) Gravity, posture and locomotion in primates. Il Sedicesimo, Firenze, pp 221–236

    Google Scholar 

  • Jouffroy FK, Godinot M, Nakano Y (1993) Biometrical characteristics of primate hands. In: Preuschoft H and Chivers DJ (eds.) Hands of primates. Springer, Wien, pp 133–171

    Google Scholar 

  • Jungers WL (1984)Scaling of the hominoid locomotor skeleton with special reference to lesser apes. In: Preuschoft H, Chivers DJ, Brockelman WY, Creel N (eds.) The lesser apes. Edinburgh University Press, Edinburgh, pp 146–169

    Google Scholar 

  • Jungers WL (1985) Body size and scaling of limb proportions in primates. In: Jungers WL (ed) Size and scaling in primate biology. Plenum Press, New York, pp 345–381

    Chapter  Google Scholar 

  • Jungers WL and Stern JT (1980) Telemetered electromyography of forelimb muscle chains in gibbons (Hylobates lar). Science 208:617–619

    Google Scholar 

  • Jungers WL and Stern JT (1981) Preliminary electromyographical analysis of brachiation in gibbon and spider monkey. Int J Primatol 2:19–33

    Google Scholar 

  • Jungers WL, Stern JT (1984) Kinesiological aspects of brachiation in lar gibbons. In: Preuschoft H, Chivers DJ, Brockelman WY, Creel N (eds) The lesser apes. Edinburgh University Press, Edinburgh, pp 119–134

    Google Scholar 

  • Larson SG (1993) Functional morphology of the shoulder in Primates. In: Gebo DL (ed) Postcranial adaptation in primates. Northern Illinois University Press, DeKalb, pp 45–69

    Google Scholar 

  • Kimura T (2002) Primate limb bones and locomotor types in arboreal or terrestrial environments. In: Okada M, Preuschoft H (eds) Arboreal locomotor adaptation in primates and its relevance to human evolution. Z Morph Anthropol 83:201–219

    Google Scholar 

  • Kimura T (2010) Arboreal origin of bipedalism re-examined. Comparative analysis. In: Abstract of the 23rd International Primatological Society Cogress, Kyoto, p 297

    Google Scholar 

  • Kümmell S (2009) Die Digiti der Synapsida: Anatomie, Evolution und Konstruktionsmorphologie. Shacker Verlag, Aachen

    Google Scholar 

  • Larson SG, Stern JT (1989) The role of supraspinatus in the quadrupedal locomotion of vervets (Cercopithecus aethiops). Implications for interpretation of humeral morphology. Am J Phys Anthropol 79:369–377

    Article  CAS  PubMed  Google Scholar 

  • Lehmann T (1974–1977) Elemente der Mechanik, Bände 1–3, Vieweg, Braunschweig

    Google Scholar 

  • Leutenegger M (1982) Scaling of sexual dimorphism in body weight and canine size. Folia Primatol 37:163–176

    Google Scholar 

  • Lorenz R (1971) The functional interpretation of the thumb in the Hylobatidae. Proceedings of the 3rd Internat. Congress Primatology, Zürich, Vol 1, 130–136

    Google Scholar 

  • Lovell NC (1987) Skeletal pathology of pongids. Am J Phys Anthropol 72:227 (Abstract)

    Google Scholar 

  • Martin R (1928) Lehrbuch der Anthropologie, G.Fischer, Jena

    Google Scholar 

  • Martin F (2003) Organisationsprinzipien zielgerichteter Bewegungen flexibler Greiforgane. Dissertation, Freie Universität Berlin

    Google Scholar 

  • Michilsens F, D`Aout K, Aerts P (2011) How pendulum-like are siamangs? Energy exchange during brachiation. Am J Phys Anthropol 154:581–591

    Google Scholar 

  • Michilsens F (2012) Functional anatomy and biomechanics of brachiating gibbons (Hylobatidae). Ph D-Thesis, Faculteit Wetenschappen, Dept. Biologie, Universiteit Antwerpen

    Google Scholar 

  • Michilsens F, Vereeke EE, D´Aout K and Aerts P (2010) Muscle moment arms and function of the siamang forelimb during brachiation. J Anat 217:521–535

    Google Scholar 

  • Mochon S and McMahon TA (1980) Ballistic walking. J Biomech 13:49–57

    Google Scholar 

  • Mochon S and McMahon TA (1981) Ballistic walking, an improved model. Math Biosciences 52:241–260

    Google Scholar 

  • Morbeck ME (1979) Forelimb use and positional adaptation in Colobus guereza: Integration of behavioural, ecological and anatomical data. In: Morbeck ME, Preuschoft H, Gomberg N (eds) Environment, Behavior and Morphology: Dynamic Interactions in Primates. Georg Fischer, New York, pp 95–117

    Google Scholar 

  • Napier JR, Napier PH (eds) (1967) A handbook of living primates. Academic Press London, NewYork

    Google Scholar 

  • Nowak MG, Reichard UH (2016) The torso-orthograde positional behavior of wild white-handed gibbons (Hylobates lar). In: Reichard UH, Hirohisa H, Barelli C (eds) Evolution of gibbons and siamang. Springer, New York, pp. 203–225

    Google Scholar 

  • Nyakatura J, Andrada E (2013) A mechanical link model of two-toed sloths: no pendular mechanics during suspensory locomotion. Acta Theriol 58:83–93

    Article  Google Scholar 

  • Okada M (1985) Primate bipedal walking. Comparative kinematics. In: Kondo S (ed) Primate morphophysiology, locomotor analysis and human bipedalism. University of Tokyo Press, Tokyo, pp 47–58

    Google Scholar 

  • Orgeldinger M (1994) Ethologische Untersuchung zur Paarbeziehung beim Siamang (Hylobates syndactylus) und deren Beeinflussung durch Jungtiere. Dissertation, Universität Heidelberg

    Google Scholar 

  • Preuschoft H (1961) Muskeln und Gelenke der Hinterextremität des Gorilla. Morphologisches Jahrbuch 101:432–540

    Google Scholar 

  • Preuschoft H (1963) Muskelgewichte bei Gorilla, Orang-utan und Mensch. Anthropologischer Anzeiger 26:308–317

    Google Scholar 

  • Preuschoft, H (1985) On the quality and magnitude of mechanical stresses in the locomotor system during rapid movements. Z Morph Anthrop 75: 245–262

    Google Scholar 

  • Preuschoft H (1989) Body shape and differences between species. Hum Evol 4:145–156

    Article  Google Scholar 

  • Preuschoft H (2002) What does ‘arboreal locomotion’ mean exactly? and what are the relationships between ‘climbing’, environment and morphology? In: Okada M, Preuschoft H (eds) Arboreal locomotor adaptation in primates and its relevance to human evolution. Z Morph Anthropol 83:171–188

    Google Scholar 

  • Preuschoft H (2004) Mechanisms for the acquisition of habitual bipedality: are there biomechanical reasons for the acquisition of upright bipedal posture? J Anat 204:363–384

    Article  PubMed  PubMed Central  Google Scholar 

  • Preuschoft H (2010) The selective value of size and sexual dimorphism in primates. Abstracts of the 23rd Congress of the International Primatological Society in Kyoto, 2010

    Google Scholar 

  • Preuschoft H, Demes B (1984a) Biomechanics of brachiation. In: Preuschoft H, Chivers DJ, Brockelman WY, Creel N (eds) The lesser apes. Edinburgh University Press, Edinburgh, pp 96–118

    Google Scholar 

  • Preuschoft H, Demes B (1984b) Biomechanic determinants of arm length and body mass in brachiators. In: Dunker HR, Fleischer G (eds) Vertebrate Morphology, Fortschritte d. Zoologie. Georg Fischer-Verlag, New York, pp 39–44

    Google Scholar 

  • Preuschoft H, Demes B (1985) Biomechanic determinants of arm length and body mass in brachiators. In: Jungers WL (ed) Size and scaling in primate biology. Plenum Press, New York, pp 383–398

    Chapter  Google Scholar 

  • Preuschoft H, Witte H (1991) Biomechanical reasons fort he evolution of hominid body shape. In: Coppens Y, Senut B (eds) Origins of bipedalism in hominids. CNRS, Paris, pp 59–77

    Google Scholar 

  • Preuschoft H, Witte H (1993) Die Körpergestalt des Menschen als Ergebnis biomechanischer Erfordernise. In: Voland E (ed) Evolution und Anpassung. Warum die Vergangenheit die Gegenwart erklärt. S. Hirzel, Stuttgart, pp 43–74

    Google Scholar 

  • Preuschoft H, Witzel U (2005) Functional shape of the skull in vertebrates: which forces determine skull morphology in lowe r primates and ancestral synapsids? Anat Rec 283:402–413

    Article  Google Scholar 

  • Preuschoft H, Chivers DJ, Brockelman WY, Creel N (eds) (1984) The lesser apes. Edinburgh University Press, Edinburgh

    Google Scholar 

  • Preuschoft H, Witte H, Demes B (1992) Biomechanical factors that influence overall body shape of large apes and humans. In: Matanao S, Tuttle R, Ishida H, Goodman M (eds) Topics in primatology, vol 3., Evolutionary biologyUniversity of Tokyo Press, Tokyo, pp 259–289

    Google Scholar 

  • Preuschoft H, Godinot M, Beard C, Nieschalk U, Jouffroy FK (1993) Biomechanical considerations to explain important morphological characters of primate hands. In: Preuschoft H, Chivers DJ (eds) Hands of primates. Springer, Wien, pp 245–256

    Chapter  Google Scholar 

  • Preuschoft H, Witte H, Christian A, Recknagel S (1994) Körpergestalt und Lokomotion bei großen Säugetieren. Verh Dt Ges Zool 87:147–163

    Google Scholar 

  • Preuschoft H, Witte H, Christian A, Fischer M (1996) Size influence on primate locomotion and body shape, with special emphasis on the locomotion of ‘small mammals’. Folia Primatol 66:93–112

    Article  CAS  PubMed  Google Scholar 

  • Preuschoft H, Christian A, Günther M (1998) Size dependences in prosimian locomotion and their implications for the distribution of body mass. Folia Primatol 69:60–81

    Article  PubMed  Google Scholar 

  • Preuschoft H, Hohn B, Stoinski S, Witzel U (2011) Why so huge? Biomechanical reasons for the acquisition of large size in sauropod and theropod dinosaurs. In: Klein N, Remes K, Sander M (eds) Biology of the Sauropod dinosaurs: understanding the life of giants. Indiana University Press, Bloomington, pp 197–218

    Google Scholar 

  • Raemaekers J (1984) Large versus small gibbons: relative roles of bioenergetics and competition in their ecological segregation in sympatry. In: Preuschoft H, Chivers DJ, Brockelman WY, Creel N (eds) The lesser apes. Edinburgh University Press, Edinburgh, pp 209–218

    Google Scholar 

  • Reichard UH, Preuschoft H (2016) Why is the siamang larger than other hylobatids? In: Reichard UH, Hirohisa H, Barelli C (eds.) Evolution of gibbons and siamang. Springer, New York, pp. 167–181. doi: 10.1007/978-1-4939-5614-2_8

    Google Scholar 

  • Ripley S (1979) Environmental grain, niche diversification, and positional behavior in Neogene primates: an evolutionary hypothesis. In: Morbeck ME, Preuschoft H, Gomberg N (eds) Environment, behavior and morphology: dynamic interactions in primates. Georg Fischer, New York, pp 37–74

    Google Scholar 

  • Rose MD (1979) Positional behaviour of natural populations: some quantitative results of a field study of Colobus guereza and Cercopithecus aethiops. In: Morbeck ME, Preuschoft H, Gomberg N (eds) Environment, behavior and morphology: dynamic interactions in primates. Georg Fischer, New York, pp 95–117

    Google Scholar 

  • Sander PM, Christian A, Clauss M et al (2010) Biology of the sauropod dinosaurs: The evolution of gigantism. Biological Reviews of the Cambridge Philosophical Society. doi: 10.1111/j.1469-185X.2010.00137.x

    Google Scholar 

  • Schilling D, Preuschoft H (1984) Ererbt oder erlernt? Formspezifische Merkmale der Gesänge von Gibbons. Verh Dtsch Zoolog Ges 77:220

    Google Scholar 

  • Schultz AH (1930) The skeleton of the trunk and limbs of higher primates. Hum Biol 2:303–438

    Google Scholar 

  • Schultz AH (1933a) Die Körperproportionen der erwachsenen catarrhinen Primaten. Anthrop Anz 10:154–185

    Google Scholar 

  • Schultz AH (1933b) Observation on the growth, classification and evolutionary specialisation of gibbons and siamangs. Hum Biol 5:212–255

    Google Scholar 

  • Schultz AH (1944) Age changes and variability in gibbons. Amer J Phys Anthropol 2:1–129

    Article  Google Scholar 

  • Schultz AH (1956a) Post-embryonic age changes. In: Hofer H, Schultz AH, Starck D (eds) Primatologia I. Karger, Basel, pp 887–964

    Google Scholar 

  • Schultz AH (1956b) The occurence and frequency of pathological and teratological conditions and of twinning among non-human primates. In: Hofer H, Schultz AH, Starck D (eds) Primatologia I. Karger, Basel, pp 965–1014

    Google Scholar 

  • Schultz AH (ed) (1975) Die Primaten, Die Enzyklopädie der Natur. Editions Rencontre, Lausanne. English edition (1969): the life of Primates. Weidenfeld & Nicolson, London

    Google Scholar 

  • Smith RJ and Jungers WL (1997) Body mass in comparative primatology. J Hum Evol 32:523–559

    Google Scholar 

  • Stern JT, Wells JP, Vangor AK, Fleagle JG (1977) Electromyography of some muscles of the upper limb in Ateles and Lagotrix. Yrbk Phys Anthropol 20:498–507

    Google Scholar 

  • Stern JT, Wells JP, Jungers WL, Vangor AK, Fleagle JG (1980) An electromyographic study of the pectoralis major in atelines and Hylobates, with special reference of the pars clavicularis. Am J Phys Anthropol 52:13–25

    Article  PubMed  Google Scholar 

  • Tuttle RH(1972) Functional and evolutionary biology of hylobatid hands and feet. In: Rumbaugh DM (ed) Gibbon and Siamang, vol 1, Karger, Basel, pp 136–206

    Google Scholar 

  • Vereeke EE, Channon AJ (2013) The role of hindlimb tendons in gibbon locomotion: springs or strings? J Exp Biol 216:3971–3980. doi: 10.1242/jeb.083527

    Google Scholar 

  • Witte H, Preuschoft H, Recknagel S (1991) Human body proportions explained on the basis of biomechanical principles. Z Morph Anthropol 78:407–423

    CAS  Google Scholar 

  • Witte H, Lesch C, Preuschoft H, Loitsch C (1995a) Die Gangarten der Pferde: Sind Schwingungsmechanismen entscheidend? Teil I. Pendelschwingungen der Beine bestimmen den Schritt. Pferdeheilkunde 11:199–206

    Article  Google Scholar 

  • Witte H, Lesch C, Preuschoft H, Loitsch C (1995b) Die Gangarten der Pferde: Sind Schwingungsmechanismen entscheidend? Teil II. Federschwingungen bestimmen den Trab und den Galopp. Pferdeheilkunde 11:265–272

    Google Scholar 

  • Yamazaki N (1985) Primate bipedal walking: computer simulation. In: Kondo S (ed) Primate morphophysiology, locomotor analysis and human bipedalism. University of Tokyo Press, Tokyo, pp 105–130

    Google Scholar 

  • Yamazaki N (1990) The effects of gravity on the interrelationship between body proportions and brchiation in the gibbons. In: Jouffroy FK, Stack HH, Niemitz C (eds) Gravity, posture and locomotion in primates. Il Sedicesimo, Firenze, pp 157–172

    Google Scholar 

  • Yamazaki N (1992) Biomechanical interrelationshsip among body proportions, posture, and bipedal walking. In: Matana S, Tuttle RH, Ishida H, Goodman M (eds) Topic in Primatology, vol 3, Evolutionary Biology, Reproductive Endocrinology an Virology. University of Tokyo Press, pp 243–257

    Google Scholar 

  • Yamazaki N, Ishida H (1984) A biomechanical study of vertical climbing and bipedal walking in gibbons. J Hum Evol 13:5673–571

    Google Scholar 

  • Yamazaki N, Ishida H, Kimura T, Okada M (1979) Biomechanical analysis of primate bipedal walking by computer simulation. J Hum Evol 8:337–349

    Article  Google Scholar 

  • Yamazaki N, Ishida H, Kimura T, Okada M, Kondo S (1983) Biomechanical evaluation of evolutionary models for prehabitual bipedalism. Ann Sci Nat Zool 5:159–168

    Google Scholar 

  • Zihlman AL, Mootnick AR, Underwood CE (2011) Anatomical contributions to Hylobatid taxonomy and adaptation. Int J Primatol 32:865–877

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We feel deeply indebted to Dr. U. Reichard for the invitation to write a contribution to this book and for his very valuable comments on several drafts. He has compelled us to describe conditions precisely and to express our conclusions clearly. We also acknowledge the comments of an unknown reviewer who contributed much to the readability of this text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Preuschoft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Preuschoft, H., Schönwasser, KH., Witzel, U. (2016). Selective Value of Characteristic Size Parameters in Hylobatids. A Biomechanical Approach to Small Ape Size and Morphology. In: Reichard, U., Hirai, H., Barelli, C. (eds) Evolution of Gibbons and Siamang. Developments in Primatology: Progress and Prospects. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-5614-2_11

Download citation

Publish with us

Policies and ethics