Skip to main content

The Torso-Orthograde Positional Behavior of Wild White-Handed Gibbons (Hylobates lar)

  • Chapter
  • First Online:
Evolution of Gibbons and Siamang

Abstract

Torso-orthograde (TO)-positional behavior is a unifying characteristic of extant hominoids. Previous studies have highlighted the unique use of forelimb-suspensory dominated locomotion and posture among hylobatids, a tremendously successful radiation of small hominoid primates, often neglecting the importance of other TO-positional behaviors, causing hylobatid locomotion and posture to appear more stereotypic and less versatile, relative to the closely related large-bodied nonhuman hominids (great apes). However, early and recent studies of hylobatid positional behavior have lacked the categorical detail necessary to effectively analyze and compare their TO-diversity and contextual use of TO-positional behaviors to those of other primates and in particular the large-bodied nonhuman hominids. To address the deficit of knowledge of the complete positional repertoire of hylobatids, we observed in detail the positional behavior of a large sample of adult white-handed gibbons (Hylobates lar) at Khao Yai National Park, Thailand. We evaluated the TO-positional repertoire of 24 adult gibbons (11 females and 13 males), and the contextual use of their TO-positional repertoire. Our results indicate that lar gibbons possess and use a diverse TO-positional repertoire that is comparable to that of large-bodied hominids. A collective and flexible use of TO-locomotion and -posture allows lar gibbons to maximize their exploitation of the arboreal canopy. We argue that hylobatids unique suspensory locomotion and posture coupled with a previously undocumented TO-versatility more accurately reflect the pattern of positional behaviors responsible for the small apes’ successful radiation and subsequent diversification across all of South and Southeast Asia’s forest habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We follow the taxonomy of Harrison (2013), which separates the superfamily Hominoidea into two extant families, the Hylobatidae (gibbons and siamang) and the Hominidae (great apes and humans). Hominids are further separated into two extant subfamilies, including Ponginae (orangutans) and Homininae (gorillas, chimpanzees, bonobos, and humans). In this chapter, use of hominid is restricted to nonhuman members of this taxonomic family.

  2. 2.

    Locomotor behaviors included in previous gibbon and siamang positional behavior studies have been limited to the generalized categories of bipedalism, brachiation, climbing, and leaping, whereas postural behaviors were limited to the generalized categories of bipedalism, lie, sit, and suspension.

  3. 3.

    We highlight, in bold text, the positional modes we used that correspond to Hunt et al. (1996) and the minor adjustments to these positional modes utilized in this chapter, so as to differentiate these detailed positional modes from the broad positional modes (i.e., more generalized forms of clambering, climbing, hoisting, and suspension) that are still common in the current literature.

  4. 4.

    In the following discussion we note that in some cases it is not possible to make detailed comparisons across all previously studied taxa, as many early studies of hominoid positional behavior utilized divergent less-detailed behavioral ethograms to that presented here and those in more recent hominoid studies.

  5. 5.

    TO-forelimb-suspend/stand is differentiated from TO-bipedal stand and one of its submodes TO-bipedal stand/forelimb-suspend by a greater emphasis of forelimb suspensory body mass support. This is differentiated in the field by observing the body mass induced deformation of each respective weight bearing substrate (Hunt et al. 1996).

  6. 6.

    We place the words ‘climb’ or ‘climbing’ in brackets to recognize that this often utilized category of locomotion (sensu Fleagle 1976) is now considered to include functionally different locomotor modes (e.g., bridging, torso-orthograde clamber/transfer, torso-orthograde vertical climb, and torso-pronograde clambering/scrambling; Hunt et al. 1996).

References

  • Altmann J (1974) Observational study of behavior: sampling methods. Behavior 49:227–267

    Article  CAS  Google Scholar 

  • Andrews P, Groves CE (1976) Gibbon and brachiation. In: Rumbaugh DM (ed) Gibbon and Siamang: a series of volumes on the lesser apes, vol 4., Suspensory behavior, locomotion, and other behaviors of captive gibbons: cognitionKarger, Basel, pp 167–218

    Google Scholar 

  • Asensio N, Brockelman WY, Malaivijitnond S, Reichard UH (2011) Gibbon travel paths are goal oriented. Anim Cogn 14:395–405

    Article  PubMed  Google Scholar 

  • Barelli C, Heistermann M, Boesch C, Reichard UH (2007) Sexual swellings in wild white-handed gibbon females (Hylobates lar) indicate the probability of ovulation. Horm Behav 51:221–230

    Article  CAS  PubMed  Google Scholar 

  • Begun DR (2007) How to identify (as opposed to define) a homoplasy: examples from fossil and living great apes. J Hum Evol 52:559–572

    Article  PubMed  Google Scholar 

  • Bertram JEA (2004) New perspectives on brachiation mechanics. Am J Phys Anthropol 125:100–117

    Article  Google Scholar 

  • Brockelman WY, Nathalang A, Gale GA (2011) The Mo Singto forest dynamics plot, Khao Yai National Park, Thailand. Nat Hist Bull Sim Soc 57:35–55

    Google Scholar 

  • Cannon CH, Leighton M (1994) Comparative locomotor ecology of gibbons and macaques: selection of canopy elements for crossing gaps. Am J Phys Anthropol 93:505–524

    Article  CAS  PubMed  Google Scholar 

  • Cannon CH, Leighton M (1996) Comparative locomotor ecology of gibbons and macaques: is brachiation more efficient? Trop Biodiv 3:261–267

    Google Scholar 

  • Cant JGH (1987a) Positional behavior of female Bornean orangutans (Pongo pygmaeus). Am J Primatol 12:71–90

    Article  Google Scholar 

  • Cant JGH (1987b) Effects of sexual dimorphism in body size on feeding postural behavior of Sumatran orangutans (Pongo pygmaeus). Am J Phys Anthropol 74:143–148

    Article  Google Scholar 

  • Cant JGH (1992) Positional behavior and body size of arboreal primates: a theoretical framework for field studies and an illustration of its application. Am J Phys Anthropol 88:273–283

    Article  CAS  PubMed  Google Scholar 

  • Cant JGH, Temerin LA (1984) A conceptual approach to foraging in primates. In: Rodman PS, Cant JGH (eds) Adaptations for foraging in nonhuman primates. Columbia University Press, New York, pp 304–342

    Google Scholar 

  • Cartmill M (1974) Pads and claws in arboreal locomotion. In: Jenkins FA (ed) Primate locomotion. Academic Press, New York, pp 45–83

    Chapter  Google Scholar 

  • Cartmill M (1985) Climbing. In: Hildebrand M, Bramble DM, Liem KF, Wake BD (eds) Functional vertebrate morphology. Harvard University Press, Cambridgem, pp 73–88

    Google Scholar 

  • Cartmill M, Milton K (1977) The lorisiform wrist joint and the evolution of “brachiating” adaptations in the Hominoidea. Am J Phys Anthropol 47:249–272

    Google Scholar 

  • Cheyne SM, Thompson CJH, Chivers DJ (2013) Travel adaptations of Bornean agile gibbons Hylobates albibarbis (Primates: Hylobatidae) in a degraded secondary forest, Indonesia. J Threat Taxa 5:3963–3968

    Article  Google Scholar 

  • Chivers DJ (1972) The siamang and the gibbon in the Malay peninsula. In: Rumbaugh DM (ed) The gibbon and siamang, vol 1. Karger, Basel, pp 103–135

    Google Scholar 

  • Chivers DJ (1974) The siamang in Malaya: a field study of a primate in tropical rain forest. Contribution to primatology, vol 4. Karger, Basel

    Google Scholar 

  • Crompton RH, Vereecke EE, Thorpe SKS (2008) Locomotion and posture from the common hominoid ancestor to fully modern hominins, with special reference to the last common panin/hominin ancestor. J Anat 212:501–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diogo R, Wood B (2011) Soft-tissue anatomy of the primates: phylogenetic analyses based on the muscles of the head, neck, pectoral region and upper limb, with notes on the evolution of these muscles. J Anat 219:273–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doran DM (1993a) Sex differences in adult chimpanzee positional behavior: the influence of body size on locomotion and posture. Am J Phys Anthropol 91:99–115

    Article  CAS  PubMed  Google Scholar 

  • Doran DM (1993b) Comparative locomotor behavior of chimpanzees and bonobos: the influence of morphology on locomotion. Am J Phys Anthropol 91:83–98

    Article  CAS  PubMed  Google Scholar 

  • Dunbar DC, Badam GL (2000) Locomotion and posture during terminal branch feeding. Int J Primatol 21:649–669

    Article  Google Scholar 

  • Fan P, Scott MB, Hanlan FEI, Changyong MA (2013) Locomotion behavior of cao vit gibbon (Nomascus nasutus) living in karst forest in Bangliang Nature Reserve, Guangxi, China. Int Zool 8:356–364

    Article  Google Scholar 

  • Fei H, Ma C, Bartlett TQ, Dai R, Xiao W, Fan P (2015) Feeding postures of Cao Vit gibbons (Nomascus nasutus) living in a low-canopy karst forest. Int J Primatol 36:1036–1054

    Article  Google Scholar 

  • Fleagle JG (1976) Locomotion and posture of the Malayan siamang and implications for hominid evolution. Folia Primatol 26:245–269

    Article  CAS  PubMed  Google Scholar 

  • Fleagle JG (1980) Locomotion and posture. In: Chivers DJ (ed) Malayan forest primates: ten years’ study in tropical rain forest. Plenum Press, New York, pp 191–207

    Chapter  Google Scholar 

  • Fleagle JG, Mittermeier RA (1980) Locomotor behavior, body size, and comparative ecology of seven Surinam monkeys. Am J Phys Anthropol 52:301–314

    Article  Google Scholar 

  • Garber PA (2011) Primate locomotor behavior and ecology. In: Campbell CJ, Fuentes A, MacKinnon K, Bearder SK, Stumpf R (eds) Primates in perspective, 2nd edn. University of Oxford Press, Oxford, pp 543–560

    Google Scholar 

  • Gebo DL (1996) Climbing, brachiation, and terrestrial quadrupedalism: historical precursors of hominid bipedalism. Am J Phys Anthropol 101:55–92

    Article  CAS  PubMed  Google Scholar 

  • Gebo DL (2004) Paleontology, terrestriality, and the intelligence of great apes. In: Russon AE, Begun DR (eds) The evolution of thought: evolutionary origins of great ape intelligence. Cambridge University Press, Cambridge, pp 320–334

    Chapter  Google Scholar 

  • Gittins SP (1983) Use of the forest canopy by the agile gibbon. Folia Primatol 40:134–144

    Article  CAS  PubMed  Google Scholar 

  • Grand TI (1972) A mechanical interpretation of terminal branch feeding. J Mammal 53:198–201

    Article  Google Scholar 

  • Grand TI (1984) Motion economy within the canopy: four strategies for mobility. In: Rodman PS, Cant JGH (eds) Adaptations for foraging in nonhuman primates. Columbia University Press, New York, pp 54–72

    Google Scholar 

  • Groves CP (1972) Systematics and phylogeny of gibbons. In: Rumbaugh D (ed) Gibbon and siamang, vol 1. Karger, New York, pp 2–89

    Google Scholar 

  • Harrison T (2013) Catarrhine origins. In: Begun DR (ed) A companion to paleoanthropology. Blackwell Publishing Ltd, New York, pp 376–396

    Chapter  Google Scholar 

  • Hochberg Y, Tamhane AC (1987) Multiple comparison procedures. John Wiley and Sons Inc., New York

    Book  Google Scholar 

  • Hollihn U (1984) Bimanual suspensory behaviour: morphology, selective advantages and phylogeny. In: Preuschoft H, Chivers DJ, Brockelman WY, Creel N (eds) The lesser apes: evolutionary and behavioral biology. Edinburgh University Press, Edinburgh, pp 85–95

    Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Statistics 6:65–70

    Google Scholar 

  • Hood, GM (2009) PopTools version 3.1.1. Available online at http://www.cse/csiro.au/poptools. Accessed 29 Dec 2015

  • Hunt KD (1991) Positional behavior in the Hominoidea. Int J Primatol 12:95–118

    Article  Google Scholar 

  • Hunt KD (1992) Positional behavior of Pan troglodytes in the Mahale Mountains and Gombe Stream National Parks, Tanzania. Am J Phys Anthropol 87:83–105

    Article  CAS  PubMed  Google Scholar 

  • Hunt KD (1994) The evolution of human bipedality: ecology and functional morphology. J Hum Evol 26:183–202

    Article  Google Scholar 

  • Hunt KD (2004) The special demands of great ape locomotion and posture. In: Russon AE, Begun DR (eds) The evolution of thought: evolutionary origins of great ape intelligence. Cambridge University Press, Cambridge, pp 172–189

    Chapter  Google Scholar 

  • Hunt KD (2016) Why are there apes? Evidence for the co-evolution of ape and monkey ecomorphology. J Anat 228:630–685

    Google Scholar 

  • Hunt KD, Cant JGH, Gebo DL, Rose MD, Walker SE, Youlatos D (1996) Standardized descriptions of primate locomotor and postural modes. Primates 37:363–387

    Article  Google Scholar 

  • Iurck MF, Nowak MG, Costa LCM, Mendes SL, Ford SM, Strier KB (2013) Feeding and resting postures of wild northern muriquis (Brachyteles hypoxanthus). Am J Primatol 75:74–87

    Article  PubMed  Google Scholar 

  • Jablonski NG (1998) The response of catarrhine primates to pleistocene environmental fluctuations in East Asia. Primates 39:29–37

    Article  Google Scholar 

  • Jablonski NG (2005) Primate homeland: forests and the evolution of primates during the tertiary and quaternary in Asia. Anth Sci 113:117–122

    Article  Google Scholar 

  • Jablonski NG, Chaplin G (2009) The fossil record of gibbons. In: Lappan S, Whittaker DJ (eds) The gibbons: new perspectives on small ape socioecology and population biology. Springer, New York, pp 111–130

    Chapter  Google Scholar 

  • Jablonski NG, Whitfort MJ, Roberts-Smith N, Qinqi X (2000) The influence of life history and diet on the distribution of catarrhine primates during the pleistocene in eastern Asia. J Hum Evol 39:131–157

    Article  CAS  PubMed  Google Scholar 

  • Kano T, Mulavwa M (1983) Feeding ecology of the pygmy chimpanzees (Pan paniscus) of Wamba. In: Susman RL (ed) The pygmy chimpanzee: evolutionary biology and behavior. Plenum Press, New York, pp 275–300

    Google Scholar 

  • Kitamura S, Suzuki S, Yumoto T, Chuailua P, Plongmai K, Poonswand P, Noma N, Maruhashi T, Suckasam C (2005) A botanical inventory of a tropical seasonal forest in Khao Yai National Park, Thailand: implications for fruit-frugivore interactions. Biodiv Conserv 14:1241–1262

    Article  Google Scholar 

  • Larson SG (1998) Parallel evolution in the hominoid trunk and forelimb. Evol Anthropol 6:87–99

    Article  Google Scholar 

  • Manduell KL, Morrogh-Bernard HC, Thorpe SKS (2011) Locomotor behavior of wild orangutans (Pongo pygmaeus wurmbii) in disturbed peat swamp forest, Sabangau, Central Kalimantan, Indonesia. Am J Phys Anthropol 145:348–359

    Article  PubMed  Google Scholar 

  • Manduell KL, Harrison ME, Thorpe SKS (2012) Forest structure and support availability influence orangutan locomotion. Am J Primatol 74:1128–1142

    Article  PubMed  Google Scholar 

  • Manly BFJ (2007) Randomization, bootstrap, and Monte Carlo methods in biology, 3rd edn. Chapman and Hall/CRC, New York

    Google Scholar 

  • Michilsens F, D’Août K, Aerts P (2011) How pendulum-like are siamangs? Energy exchange during brachiation. Am J Phys Anthropol 145:581–591

    Article  PubMed  Google Scholar 

  • Michilsens F, D’Août K, Vereecke EE, Aerts P (2012) One step beyond: different step-to-step transitions exist during continuous contact brachiation in siamangs. Biol Open 1:411–421

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittermeier RA (1978) Locomotion and posture in Ateles geoffroyi and Ateles paniscus. Folia Primatol 30:161–193

    Article  CAS  PubMed  Google Scholar 

  • Myatt JP, Thorpe SKS (2011) Postural strategies employed by orangutans (Pongo abelii) during feeding in the terminal branch niche. Am J Phys Anthropol 46:73–82

    Article  Google Scholar 

  • Napier JR (1967) Evolutionary aspects of primate locomotion. Am J Phys Anthropol 27:333–342

    Article  CAS  PubMed  Google Scholar 

  • Nowak MG, Reichard UH (2016) Locomotion and posture in ancestral hominoids prior to the split of hylobatids. In: Reichard UH, Hirohisa H, Barelli C (eds) Evolution of gibbons and siamang. Springer, New York, pp 55–89

    Google Scholar 

  • Pilbeam D (1996) Genetic and morphological records of the Hominoidea and hominid origins: a synthesis. Mol Phylogenet Evol 5:155–168

    Article  CAS  PubMed  Google Scholar 

  • Pilbeam D, Young N (2004) Hominoid evolution: synthesizing disparate data. C R Palevol 3:305–321

    Article  Google Scholar 

  • Povinelli D, Cant JGH (1995) Arboreal clambering and the evolution of self-conception. Quart Rev Biol 70:393–421

    Article  CAS  PubMed  Google Scholar 

  • Preuschoft H (2002) What does “arboreal locomotion” mean exactly and what are the relationships between “climbing”, environment and morphology? Z Morph Anthrop 83:171–188

    Google Scholar 

  • Preuschoft H, Demes H (1984) Biomechanics of brachiation. In: Preuschoft H, Chivers D, Brockelman W, Creel N (eds) The lesser apes: evolutionary and behavioural biology. Edinburgh University Press, Edinburgh, pp 96–118

    Google Scholar 

  • Preuschoft H, Witte H, Fischer M (1995) Locomotion in nocturnal prosimians. In: Alterman L, Doyle GA, Izard MK (eds) Creatures of the dark: the nocturnal prosimians. Plenum Press, New York, pp 453–472

    Chapter  Google Scholar 

  • Reichard UH, Barelli C, Hirai H, Nowak G (2016) The evolution of gibbons and siamang. In: Reichard UH, Hirohisa H, Barelli C (eds) Evolution of gibbons and siamang. Springer, New York, pp 3–41

    Google Scholar 

  • Remis M (1995) Effects of body size and social context on the arboreal activities of lowland gorillas in the Central African Republic. Am J Phys Anthropol 97:413–433

    Article  CAS  PubMed  Google Scholar 

  • Remis M (1998) The gorilla paradox: the effects of body size and habitat on the positional behavior of lowland and mountain gorillas. In: Strasser E, Fleagle J, Rosenberger A, McHenry H (eds) Primate locomotion. Plenum Press, New York, pp 95–108

    Chapter  Google Scholar 

  • Rose MD (1997) Functional and phylogenetic features of the forelimb in Miocene hominoids. In: Begun DR, Ward CV, Rose MD (eds) Function, phylogeny, and fossils: Miocene hominoid evolution and adaptations. Plenum Press, New York, pp 79–100

    Chapter  Google Scholar 

  • Sati JP, Alfred JRB (2002) Locomotion and posture in hoolock gibbon. Ann For 10:298–306

    Google Scholar 

  • Smith RJ, Jungers WL (1997) Body mass in comparative primatology. J Hum Evol 32:523–559

    Article  CAS  PubMed  Google Scholar 

  • Srikosamatara S (1984) Ecology of pileated gibbons in South-East Thailand. In: Preuschoft H, Chivers DJ, Brockelman WY, Creel N (eds) The lesser apes. Edinburgh University Press, Edinburgh, pp 242–257

    Google Scholar 

  • Stanford CB (2002) Brief communication: arboreal bipedalism in Bwindi chimpanzees. Am J Phys Anthropol 119:87–91

    Article  PubMed  Google Scholar 

  • Stanford CB (2006) Arboreal bipedalism in wild chimpanzees: implications for the evolution of hominid posture and locomotion. Am J Phys Anthropol 129:225–231

    Article  PubMed  Google Scholar 

  • Temerin A, Cant JGH (1983) The evolutionary divergence of old world monkeys and apes. Am Nat 122:335–351

    Article  Google Scholar 

  • Thompson CJH (2007) Gibbon locomotion in disturbed peat-swamp forest, Sebangau, Central Kalimantan. M.A. Thesis, University of Cambridge

    Google Scholar 

  • Thorpe SKS, Crompton RH (2005) Locomotor ecology of wild orangutans (Pongo pygmaeus abelii) in the Gunung Leuser Ecosystem, Sumatra, Indonesia: a multivariate analysis using log-linear modeling. Am J Phys Anthropol 127:58–78

    Article  PubMed  Google Scholar 

  • Thorpe SKS, Crompton RH (2006) Orangutan positional behavior and the nature of arboreal locomotion in Hominoidea. Am J Phys Anthropol 131:384–401

    Article  PubMed  Google Scholar 

  • Thorpe SKS, Crompton RH (2009) Orangutan positional behavior. In: Wich SA, Utami Atmoko SS, Mitra Setia T, van Schaik CP (eds) Orangutans: geographic variation in behavioral ecology and conservation. Oxford University Press, Oxford, pp 33–48

    Google Scholar 

  • Thorpe SKS, Holder RL, Crompton RH (2007) Origin of human bipedalism as an adaptation for locomotion on flexible branches. Science 316:1328–1331

    Article  CAS  PubMed  Google Scholar 

  • Tourkakis CA (2009) Savanna chimpanzees (Pan troglodytes verus) as a referential model for the evolution of habitual bipedalism in hominids. MA Thesis, Iowa State University

    Google Scholar 

  • Tyler DE (1991) The problems of the Pliopithecidae as a hylobatid ancestor. Hum Evol 6:73–80

    Article  Google Scholar 

  • Ward CV (1997) Functional anatomy and phyletic implications of the hominoid trunk and hindlimb. In: Begun DR, Ward CV, Rose MD (eds) Function, phylogeny, and fossils: Miocene hominoid evolution and adaptations. Plenum Press, New York, pp 101–130

    Chapter  Google Scholar 

  • Ward CV (2015) Postcranial and locomotor adaptations of hominoids. In: Henke W, Tattersall I (eds) Handbook of paleoanthropology, Part 2, 2nd edn. Springer, New York, pp 1363–1386

    Chapter  Google Scholar 

  • Young NM (2003) A reassessment of living hominoid postcranial variability: implications for ape evolution. J Hum Evol 45:441–464

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We kindly acknowledge the National Park Division of the Royal Forestry Department, Bangkok, and the National Research Council of Thailand , Bangkok for their permission to conduct research at Khao Yai National Park , Thailand. We also thank Chaleam Sagnate, Jacqueline Prime, and Surasack Homros for their assistance while in the field. Lastly, many of the ideas discussed in this chapter are also based on field observations of Sumatran Hylobates agilis and Symphalangus syndactylus that would not have been possible without the assistance of an NSF Doctoral Dissertation Improvement Grant (BCS 1061477 awarded to MGN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew G. Nowak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nowak, M.G., Reichard, U.H. (2016). The Torso-Orthograde Positional Behavior of Wild White-Handed Gibbons (Hylobates lar). In: Reichard, U., Hirai, H., Barelli, C. (eds) Evolution of Gibbons and Siamang. Developments in Primatology: Progress and Prospects. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-5614-2_10

Download citation

Publish with us

Policies and ethics