Skip to main content

Beating Quantum Limits in Optical Spectroscopy

  • Chapter
  • First Online:
Quantum-Limit Spectroscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 200))

  • 921 Accesses

Abstract

In Chaps. 6 and 7 we have discussed the effect of nonclassical squeezed light on optical spectra. A variety of classic and standard problems in optical spectroscopy have been re-examined with squeezed light included in the formulations. We have seen how the introduction of squeezed light led to many unusual effects in optical spectroscopy. Examples include a reduction in the linewidth of the fluorescence spectra, population inversion and the decay to a pure state. We now turn on the subject of precision optical spectroscopy, which deals with the fundamental laws of physics imposing limits to the precision in measurements and interferometry. Consequently, this chapter begins with a discussion of the concepts of the fundamental limits in physics. The limits, called standard limits to the precision of measurements, determine how precisely a physical quantity can be measured. Three apparently distinct limits are known: The standard quantum limit and the Heisenberg limit, both imposed by quantum fluctuations of light, and the diffraction limit imposed by the wave nature of light. All detection systems are subject to these limits. After discussing the basic concepts of the standard limits, a study is made of some techniques, called quantum strategies, that have been developed to beat the diffraction and the standard quantum limits. We shall illustrate how one can beat the limits using nonclassical squeezed and entangled light. We shall see that the ability to produce squeezed light and entangled (correlated) light beams is leading us into a remarkably new domain of quantum physics in which detectors can resolve two closely spaced points or spectral lines with the minimal resolvable limit significantly reduced or even completely suppressed. This realm of physics is now known as quantum image spectroscopy or precision optical spectroscopy. Thereafter, we shall examine how one can improve the signal-to-noise ratio with a quantum squeezed field, and the spectral resolution with entangled light. Following this development, we describe several experiments that demonstrated the improvement of the spectral resolution with entangled light beams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This relation is true for small values of \({\Delta }\phi \) which are of interest here. We do not even touch problems related to a quantum phase operator.

References

  1. C.M. Caves: Phys. Rev. D 23, 1693 (1981)

    Google Scholar 

  2. M. Xiao, L.A. Wu, H.J. Kimble: Phys. Rev. Lett. 59, 278 (1987)

    Google Scholar 

  3. P. Grangier, R.E. Slusher, B. Yurke, A. LaPorta: Phys. Rev. Lett. 59, 2153 (1987)

    Google Scholar 

  4. O. Steuernagel: Phys. Rev. A 65, 033820 (2002)

    Google Scholar 

  5. V. Giovannetti, S. Lloyd, L. Maccone: Phys. Rev. Lett. 108, 260405 (2012)

    Google Scholar 

  6. M.J.W. Hall, D.W. Berry, M. Zwierz, H.M. Wiseman: Phys. Rev. A 85, 041802 (2012)

    Google Scholar 

  7. D.W. Berry, M.J.W. Hall, M. Zwierz, H.M. Wiseman: Phys. Rev. A 86, 053813 (2012)

    Google Scholar 

  8. D.W. Berry, M.J.W. Hall, H.M. Wiseman: Phys. Rev. Lett. 111, 113601 (2013)

    Google Scholar 

  9. A. Luis: Phys. Lett. A 329, 8 (2004)

    Google Scholar 

  10. J. Beltrán, A. Luis: Phys. Rev. A 72, 045801 (2005)

    Google Scholar 

  11. S. Boixo, S.T. Flammia, C.M. Caves, J. Geremia: Phys. Rev. Lett. 98, 090401 (2007)

    Google Scholar 

  12. S.M. Roy, S.L. Braunstein: Phys. Rev. Lett. 100, 220501 (2008)

    Google Scholar 

  13. P.M. Anisimov, G.M. Raterman, A. Chiruvelli, W.N. Plick, S.D. Huver, H. Lee, J.P. Dowling: Phys. Rev. Lett. 104, 103602 (2010)

    Google Scholar 

  14. M. Zwierz, C.A. Pérez-Delgado, P. Kok: Phys. Rev. Lett. 105, 180402 (2010)

    Google Scholar 

  15. M. Zwierz, C.A. Pérez-Delgado, P. Kok: Phys. Rev. A 85, 042112 (2012)

    Google Scholar 

  16. C.W. Helstrom: Phys. Lett. 25A, 101 (1967)

    Google Scholar 

  17. S.L. Braunstein, C.M. Caves: Phys. Rev. Lett. 72, 3439 (1994)

    Google Scholar 

  18. S.L. Braunstein, C.M. Caves, G.J. Milburn, Ann. Phys. (N.Y.) 24, 135 (1996)

    Google Scholar 

  19. S. Boixo, A. Datta, M.J. Davis, S.T. Flammia, A. Shaji, C.M. Caves: Phys. Rev. Lett. 101, 040403 (2008)

    Google Scholar 

  20. A. Rivas, A. Luis: New J. Phys. 14, 093052 (2012)

    Google Scholar 

  21. S. Choi, B. Sundaram: Phys. Rev. A 77, 053613 (2008)

    Google Scholar 

  22. M.J. Woolley, G.J. Milburn, C.M. Caves: New J. Phys. 10, 125018 (2008)

    Google Scholar 

  23. A.M. Rey, L. Jiang, M.D. Lukin: Phys. Rev. A 76, 053617 (2007)

    Google Scholar 

  24. B.A. Chase, B.Q. Baragiola, H.L. Partner, B.D. Black, J.M. Geremia: Phys. Rev. A 79, 062107 (2009)

    Google Scholar 

  25. M. Napolitano, M. Koschorreck, B. Dubost, N. Behbood, R.J. Sewell, M.W. Mitchell: Nature 471, 486 (2011)

    Google Scholar 

  26. T. Nagata, R. Okamoto, J.L. O’Brien, K. Sasaki, S. Takeuchi: Science 316, 726 (2007)

    Google Scholar 

  27. R. Okamoto, H.F. Hofmann, T. Nagata, J.L. O’Brien, K. Sasaki, S. Takeuchi: New J. Phys. 10, 073033 (2008)

    Google Scholar 

  28. K.J. Resch, K.L. Pregnell, R. Prevedal, A. Gilchrist, G.J. Pryde, J.L. O’Brien, A.G. White: Phys. Rev. Lett. 98, 223601 (2007)

    Google Scholar 

  29. P.J. Mosley, J.S. Lundeen, B.J. Smith, P. Wasylczyk, A.B. UÕRen, C. Silberhorn, I. A. Walmsley: Rev. Lett. 100, 133601 (2008)

    Google Scholar 

  30. C. Söller, O. Cohen, B.J. Smith, I.A. Walmsley, C. Silberhorn: Phys. Rev. A 83, 031806(R) (2011)

    Google Scholar 

  31. Z. Li-Jian, X. Min: Chin. Phys. B 22, 110310 (2013)

    Google Scholar 

  32. C.K. Hong, Z.Y. Ou, L. Mandel: Phys. Rev. Lett. 59, 2044 (1987)

    Google Scholar 

  33. A. Datta, L. Zhang, N. Thomas-Peter, U. Dorner, B.J. Smith, I.A. Walmsley: Phys. Rev. A 83, 063836 (2011)

    Google Scholar 

  34. M.J. Holland, K. Burnett: Phys. Rev. Lett. 71, 1355 (1993)

    Google Scholar 

  35. X. Guo-Yong, G. Guang-Can: Chin. Phys. B 22, 110601 (2013)

    Google Scholar 

  36. A. Luis, A. Rodil: Phys. Rev. A 87, 034101 (2013)

    Google Scholar 

  37. Y. Israel, S. Rosen, Y. Silberberg: Phys. Rev. Lett. 112, 103604 (2014)

    Google Scholar 

  38. D.-W. Wang, M.O. Scully: Phys. Rev. Lett. 113, 083601 (2014)

    Google Scholar 

  39. X. Xu, J.M. Taylor: Phys. Rev. A 90, 043848 (2014)

    Google Scholar 

  40. D. Li, B. T. Gard, Y. Gao, C.-H. Yuan, W. Zhang, H. Lee, J.P. Dowling: arXiv:1603.09019 [quant-ph], (2016)

  41. S. Ragole, J. M. Taylor: arXiv:1601.02549 [cond-mat.quant-gas], (2016)

  42. O. Hosten, N.J. Engelsen, R. Krishnakumar, M.A. Kasevich: Nature 529, 505 (2016)

    Google Scholar 

  43. S. R. Shepard, F. I. Moxley, III, J. P. Dowling: Phys. Rev. A 93, 033805 (2016)

    Article  ADS  Google Scholar 

  44. H.F.H. Cheung, Y.S. Patil, L. Chang, S. Chakram, M. Vengalattore: arXiv:1601.02324 [quant-ph], (2016)

  45. L. Czekaj, A. Przysiezna, M. Horodecki, P. Horodecki: Phys. Rev. A 92, 062303 (2015)

    Google Scholar 

  46. R. Demkowicz-Dobrzański, M. Jarzyna, J. Kolodynski: Progress in Optics 60, 345 (2015)

    Google Scholar 

  47. J. Huang, X. Qin, H. Zhong, Y. Ke, C. Lee: Scientific Reports 5, 178894 (2015)

    Google Scholar 

  48. T. Tanaka, P. Knott, Y. Matsuzaki, S. Dooley, H. Yamaguchi, W.J. Munro, S. Saito: Phys. Rev. Lett. 115, 170801 (2015)

    Google Scholar 

  49. C.-P. Wei, X.-Y. Hu, Ya-Fei, Z.-M. Zhang: Chin. Phys. B 25, 040601 (2016)

    Google Scholar 

  50. W. Dür, M. Skotiniotis, F. Fröwis, B. Kraus: Phys. Rev. Lett. 112, 080801 (2014)

    Google Scholar 

  51. G. Arrad, Y. Vinkler, D. Aharonov, A. Retzker: Phys. Rev. Lett. 112, 150801 (2014)

    Google Scholar 

  52. E.M. Kessler, I. Lovchinsky, A.O. Sushkov, M.D. Lukin: Phys. Rev. Lett. 112, 150802 (2014)

    Google Scholar 

  53. A.W. Chin, S.F. Huelga, M.B. Plenio: Phys. Rev. Lett. 109, 233601 (2012)

    Google Scholar 

  54. J. Jeske, J.H. Cole, S.F. Huelga: New J. Phys. 16, 073039 (2014)

    Google Scholar 

  55. E. Rocco, R.N. Palmer, T. Valenzuela, V. Boyer, A. Freise, K. Bongs: New J. Phys 16, 093046 (2014)

    Google Scholar 

  56. J. Borregaard, A.S. Sorensen: Phys. Rev. Lett. 111, 090801 (2013)

    Google Scholar 

  57. E. Davis, G. Bentsen, M. Schleier-Smith: Phys. Rev. Lett. 116, 053601 (2016)

    Google Scholar 

  58. E. Abbe: Archiv für Mikroskopische Anatomie 9, 413 (1873)

    Google Scholar 

  59. L. Rayleigh: Phil. Mag. 8, 261 (1879)

    Google Scholar 

  60. V. Giovannetti, S. Lloyd, L. Maccone, J.H. Shapiro: Physical Review A 79, 013827 (2009)

    Google Scholar 

  61. L.A. Rozema: Phys. Rev. Lett. 112, 223602 (2014)

    Google Scholar 

  62. M. De Angelo, Y.-H. Kim, S.P. Kulik, Y. Shih: Phys. Rev. Lett. 92, 233601 (2004)

    Google Scholar 

  63. H.J. Chang, H. Shin, M.N. O’Sullivan-Hale, R.W. Boyd: J. Mod. Opt. 53, 2271 (2006)

    Google Scholar 

  64. P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, A. Zeilinger: Nature (London) 429, 158 (2004)

    Google Scholar 

  65. P.R. Hemmer, A. Muthukrishnan, M.O. Scully, M.S. Zubairy: Phys. Rev. Lett. 96, 163603 (2006)

    Google Scholar 

  66. Q. Sun, P.R. Hemmer, M.S. Zubairy: Phys. Rev. A 75, 065803 (2007)

    Google Scholar 

  67. W. Ge, P.R. Hemmer, M.S. Zubairy: Phys. Rev. A 87, 023818 (2013)

    Google Scholar 

  68. M. Al-Amri, Z. Liao, M.S. Zubairy: Adv. At. Mol. Opt. Phys. 66, 1 (2012)

    Google Scholar 

  69. M. Kiffner, J. Evers, M.S. Zubairy: Phys. Rev. Lett. 100, 073602 (2008)

    Google Scholar 

  70. Z. Liao, M. Al-Amri, M.S. Zubairy: Phys. Rev. Lett. 105, 183601 (2010)

    Google Scholar 

  71. Z. Liao, M. Al-Amri, T. Becker, W.P. Schleich, M.O. Scully, M.S. Zubairy: Phys. Rev. A 87, 023405 (2013)

    Google Scholar 

  72. Z. Liao, M. Al-Amri, M.S. Zubairy: Phys. Rev. A 88, 053809 (2013)

    Google Scholar 

  73. J. Rui, Y. Jiang, G.-P. Lu, M.-J. Zhu, B. Zhao, X.-H. Bao, J.-W. Pan: Phys. Rev. A 93, 033837 (2016)

    Google Scholar 

  74. M. Tsang, R. Nair, X. Lu: arXiv:1511.00552 (2015)

  75. W.-K. Tham, H. Ferretti, A. M. Steinberg: arXiv:1606.02666 (2016)

  76. G. Tóth, L. Apellaniz: J. Phys. A: Math Theor. 47, 424006 (2014)

    Google Scholar 

  77. M.B. Nasr, D.P. Goode, N. Nguyen, G. Rong, L. Yang, B.M. Reinhard, B.E.A. Saleh, M.C. Teich: Optics Commun 282, 1154 (2008)

    Google Scholar 

  78. G. Tóth, W. Wieczorek, D. Gross, R. Krischek, C. Schwemmer, H. Weinfurter: Phys. Rev. Lett. 105, 250403 (2010)

    Google Scholar 

  79. M.D. Mazurek, K.M. Schreiter, R. Prevedel, R. Kaltenbaek, K.J. Resch: Scientific Rep. 3, 1582 (2013)

    Google Scholar 

  80. S.R. Arridge: Inverse Problems 15, R41 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Ficek .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Ficek, Z., Tanaś, R. (2017). Beating Quantum Limits in Optical Spectroscopy. In: Quantum-Limit Spectroscopy. Springer Series in Optical Sciences, vol 200. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3740-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3740-0_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3738-7

  • Online ISBN: 978-1-4939-3740-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics