Skip to main content

Quantum Fluctuations and Their Measurements

  • Chapter
  • First Online:
Quantum-Limit Spectroscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 200))

  • 895 Accesses

Abstract

The electromagnetic (radiation) fields are determined by two vector fields, the electric field and magnetic induction, which are subject to fluctuations. Even in a highly stabilized laser, the phase and amplitude of the resulting coherent electromagnetic field exhibit temporal fluctuations. There are several reasons why the radiation field fluctuates. Much of these irregularities arise from random and uncontrolled changes that occur in any radiation source and lead to random changes in the radiation frequency and amplitude. Even if all these sources of fluctuations are eliminated, radiation fields are still subject to fluctuations arising from the laws of quantum physics and are never entirely absent. These fluctuations are called quantum fluctuations and impose the (quantum) limit on the precision of any measurements in physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the language of the stochastic processes, we assume that the intensity of the incident light is not a stochastic variable, and one considers only a single realization of a possible ensemble of optical fields with intensity \(I(\varvec{r},t)\).

  2. 2.

    The intensity I can be defined in different ways: it can be just \(I(\varvec{r},t) =\varvec{E}^{*}\left( \varvec{r},t\right) \cdot \varvec{E}\left( \varvec{r},t\right) \) in [V\(^{2}\)/m\(^{2}\)], or multiplied by \(2\varepsilon _{0}c\) in [W/m\(^{2}\)], or multiplied by \(2\varepsilon _{0}c\lambda \) in [photons/second].

  3. 3.

    The radiation intensity often appears in the literature under different names as the intensity spectrum or excitation spectrum or atomic lineshape.

References

  1. W. Heitler: The Quantum Theory of Radiation, (Clarendon, Oxford, 1954)

    Google Scholar 

  2. W. Louisell: Quantum Statistical Properties of Radiation, (Wiley, New York, 1973)

    Google Scholar 

  3. L. Allen, J. H. Eberly: Optical Resonance and Two-Level Atoms, (Wiley, New York, 1975)

    Google Scholar 

  4. E.A. Power, S. Zienau: Philos. Trans. R. Soc. London Ser. A 251, 427 (1959)

    Google Scholar 

  5. W.P. Healy: J. Phys. A 10, 279 (1977)

    Google Scholar 

  6. L. Mandel, E. Wolf: Rev Mod. Phys. 37, 231 (1965)

    Google Scholar 

  7. M. Born, E. Wolf: Principles of Optics, (Pergamon, London, 1975)

    Google Scholar 

  8. R. Hanbury-Brown, R.Q. Twiss: Nature 177, 27 (1956)

    Google Scholar 

  9. H.J Kimble, L. Mandel: Phys. Rev. A 13, 2123 (1976)

    Google Scholar 

  10. H.J. Carmichael, D.F. Walls: J. Phys. B 9, 1199 (1976)

    Google Scholar 

  11. H.J Kimble, M. Dagenais, L. Mandel: Phys. Rev. Lett. 39, 691 (1977)

    Google Scholar 

  12. R.J. Glauber: Phys. Rev. 131, 2766 (1963)

    Google Scholar 

  13. E.C.G. Sudarshan: Phys. Rev. Lett. 10, 277 (1963)

    Google Scholar 

  14. J.D. Cresser: Phys. Rep. 94, 47 (1983)

    Google Scholar 

  15. B. Renaud, R.M. Whitley, C.R. Stroud, Jr.: J. Phys. B: At. Mol. Phys. 10, 19 (1977)

    Google Scholar 

  16. J.H. Eberly, K. WĂłdkiewicz: J. Opt. Soc. Am. 67, 1252 (1977)

    Google Scholar 

  17. F. DeMartini, M. Marrocco, P. Mataloni, L. Crescentini, R. Loudon: Phys. Rev. A 43, 2480 (1991)

    Google Scholar 

  18. L. Mandel: Phys. Rev. 152, 438 (1966)

    Google Scholar 

  19. Z. Ficek, S. Swain: Quantum Interference and Coherence: Theory and Experiments, (Springer, Berlin Heidelberg New York 2005)

    Google Scholar 

  20. M.J. Stephen: J. Chem. Phys. 40, 669 (1964)

    Google Scholar 

  21. R.H. Lehmberg: Phys. Rev. A 2, 883, 889 (1970)

    Google Scholar 

  22. R.H. Dicke: Phys. Rev. 93, 99 (1954)

    Google Scholar 

  23. N.E. Rehler, J.H. Eberly: Phys. Rev. A 3, 1735 (1971)

    Google Scholar 

  24. G.S. Agarwal: In Quantum Statistical Theories of Spontaneous Emission and their Relation to other Approaches, ed by G. Höhler, Springer Tracts in Modern Physics, vol 70 (Springer, Berlin Heidelberg New York, 1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Ficek .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Ficek, Z., Tanaƛ, R. (2017). Quantum Fluctuations and Their Measurements. In: Quantum-Limit Spectroscopy. Springer Series in Optical Sciences, vol 200. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3740-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3740-0_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3738-7

  • Online ISBN: 978-1-4939-3740-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics