Skip to main content

The Neural Processing of Frequency Modulations in the Auditory System of Bats

  • Chapter
  • First Online:
Bat Bioacoustics

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 54))

Abstract

This chapter is concerned with the neural processing of communication calls emitted by bats. The focus is on the processing of frequency modulated (FM) sweeps in the inferior colliculus (IC), the midbrain auditory nucleus that receives the convergent projections from almost all lower auditory nuclei. The chapter has four themes. The first theme is the dominant role that inhibition plays in shaping the response preferences of IC neurons. The second theme is the heterogeneity of mechanisms that shape the response properties of IC neurons. There is not a single mechanism that the IC employs to form a given response property, but rather there are multiple ways in which the same response property is formed within the IC population. The third theme is the close correspondence between neural tuning for a particular FM feature and acoustic properties of conspecific communication signals. In bats at least, this correspondence suggests that IC neurons are specifically encoding features of these signals through the neural computations that generate FM selectivity. Moreover, the various selectivities expressed by IC neurons for communication calls are a consequence of the multiple ways in which their selectivities for features of acoustic signals, such as the preference for the direction of FM sweeps, are created. The fourth theme is the idea that the auditory system of bats is not distinguished by novel mechanisms, but rather that mechanisms and features that are present in the auditory systems of all mammals are more pronounced in bats than in other mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andoni, S., & Pollak, G. D. (2011). Selectivity for spectral motion as a neural computation for encoding natural communication signals in bat inferior colliculus. Journal of Neuroscience, 31(46), 16529–16540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andoni, S., Li, N., & Pollak, G. D. (2007). Spectrotemporal receptive fields in the inferior colliculus revealing selectivity for spectral motion in conspecific vocalizations. Journal of Neuroscience, 27(18), 4882–4893.

    Article  CAS  PubMed  Google Scholar 

  • Balaban, E. (1988). Bird song syntax: Learned intraspecific variation is meaningful. Proceedings of the National Academy of Sciences of the USA, 85(10), 3657–3660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behr, O., & von Helversen, O. (2004). Bat serenades—complex courtship songs of the sac-winged bat (Saccopteryx bilineata). Behavioral Ecology and Sociobiology, 56, 106–115.

    Article  Google Scholar 

  • Bohn, K. M., Schmidt-French, B., Ma, S. T., & Pollak, G. D. (2008). Syllable acoustics, temporal patterns, and call composition vary with behavioral context in Mexican free-tailed bats. Journal of the Acoustical Society of America, 124(3), 1838–1848.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bohn, K. M., Schmidt-French, B., Schwartz, C., Smotherman, M., & Pollak, G. D. (2009). Versatility and stereotypy of free-tailed bat songs. PLoS ONE, 4(8), e6746.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boughman, J. W. (1998). Vocal learning by greater spear-nosed bats. Proceedings of the Royal Society of London B: Biological Sciences, 265(1392), 227–233.

    Article  CAS  Google Scholar 

  • Brand, A., Urban, R., & Grothe, B. (2000). Duration tuning in the mouse auditory midbrain. Journal of Neurophysiology, 84(4), 1790–1799.

    CAS  PubMed  Google Scholar 

  • Casseday, J. H., Ehrlich, D., & Covey, E. (1994). Neural tuning for sound duration: Role of inhibitory mechanisms in the inferior colliculus. Science, 264, 847–850.

    Article  CAS  PubMed  Google Scholar 

  • Casseday, J. H., Covey, E., & Grothe, B. (1997). Neural selectivity and tuning for sinusoidal frequency modulations in the inferior colliculus of the big brown bat, Eptesicus fuscus. Journal of Neurophysiology, 77(3), 1595–1605.

    CAS  PubMed  Google Scholar 

  • Casseday, J. H., Fremouw, T., & Covey, E. (2002). The inferior colliculus: A hub for the central auditory system. In D. Oertel, A.N. Popper, & R. R. Fay (Eds.), Integrative functions in the mammalian auditory pathway (pp. 238–318). New York: Springer.

    Chapter  Google Scholar 

  • Catchpole, C. K., & Slater, P. J. B. (1995). Bird song: Biological themes and variations. Cambridge: Cambridge University Press.

    Google Scholar 

  • Covey, E., & Casseday, J. H. (1999). Timing in the auditory system of the bat. Annual Review of Physiology, 61, 457–476.

    Article  CAS  PubMed  Google Scholar 

  • David, S.V., Mesgarani, N., Fritz, J.B., & Shamma, S.A. (2009) Rapid synaptic depression explains nonlinear modulation of spectro-temporal tuning in primary auditory cortex by natural stimuli. Journal of Neuroscience, 29, 3374–3386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doupe, A. J., & Kuhl, P. K. (1999). Birdsong and human speech: Common themes and mechanisms. Annual Review of Neuroscience, 22, 567–631.

    Article  CAS  PubMed  Google Scholar 

  • Fuzessery, Z. M., Razak, K. A., & Williams, A. J. (2011). Multiple mechanisms shape selectivity for FM sweep rate and direction in the pallid bat inferior colliculus and auditory cortex. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 197, 615–623.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gill, P., Zhang, J., Woolley, S. M., Fremouw, T., & Theunissen, F. E. (2006). Sound representation methods for spectro-temporal receptive field estimation. Journal of Computational Neuroscience, 21, 5–20.

    Article  PubMed  Google Scholar 

  • Gittelman, J. X., & Pollak, G. D. (2011). It’s about time: How input timing is used and not used to create emergent properties in the auditory system. Journal of Neuroscience, 31, 2576–2583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gittelman, J. X., Li, N., & Pollak, G. D. (2009). Mechanisms underlying directional selectivity for frequency modulated sweeps in the inferior colliculus revealed by in vivo whole-cell recordings. Journal of Neuroscience, 29, 13030–13041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gittelman, J. X., Wang, L., Colburn, H. S., & Pollak, G. D. (2012). Inhibition shapes response selectivity in the inferior colliculus by gain modulation. Frontiers of Neural Circuits, 6, 67.

    Article  Google Scholar 

  • Griffin, D. R. (1944). Echolocation by blind men and bats. Science, 100, 589–590.

    Article  CAS  PubMed  Google Scholar 

  • Griffin, D. R. (1958). Listening in the dark. Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Holmstrom, L., Roberts, P. D., & Portfors, C. V. (2007). Responses to social vocalizations in the inferior colliculus of the mustached bat are influenced by secondary tuning curves. Journal of Neurophysiology, 98, 3461–3472.

    Article  PubMed  Google Scholar 

  • Hurley, L. M., & Sullivan, M. R. (2012). From behavioral context to receptors: Serotonergic modulatory pathways in the IC. Frontiers of Neural Circuits, doi: 10.3389/fncir.2012.00058

    Google Scholar 

  • Kanwal, J. S. (1999). Processing species-specific calls: Combination-sensitive neurons in an echolocating bat. In M. D. Hauser & M. Konishi (Eds.), The design of animal communication (pp. 133–156). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Kanwal, J. S., Matsumura, S., Ohlemiller, K., & Suga, N. (1994). Analysis of acoustic elements and syntax in communication sounds emitted by mustached bats. Journal of the Acoustical Society of America, 96, 1229–1254.

    Article  CAS  PubMed  Google Scholar 

  • Klein, D. J., Depireux, D. A., Simon, J. Z., & Shamma, S. A. (2000). Robust spectrotemporal reverse correlation for the auditory system: Optimizing stimulus design. Journal of Computational Neuroscience, 9, 85–111.

    Article  CAS  PubMed  Google Scholar 

  • Klug, A., Bauer, E. E., Hanson, J. T., Hurley, L., Meitzen, J., & Pollak, G. D. (2002). Response selectivity for species-specific calls in the inferior colliculus of Mexican free-tailed bats is generated by inhibition. Journal of Neurophysiology, 88, 1941–1954.

    PubMed  Google Scholar 

  • Knornschild, M., Behr, O., & von Helversen, O. (2006). Babbling behavior in the sac-winged bat, Saccopteryx bilineata. Naturwissenschaften, 93, 451–454.

    Article  PubMed  Google Scholar 

  • Koch, U., & Grothe, B. (1998) GABAergic and glycinergic inhibition sharpens tuning for frequency modulations in the inferior colliculus of the big brown bat.Journal of Neurophysiology, 80, 71–82.

    Google Scholar 

  • Kossl, M., & Vater, M. (1989). Noradrenaline enhances temporal auditory contrast and neuronal timing precision in the cochlear nucleus of the mustached bat. Journal of Neuroscience, 9, 4169–4178.

    CAS  PubMed  Google Scholar 

  • Kowalski, N., Depireux, D. A., & Shamma, S. A. (1996). Analysis of dynamic spectra in ferret primary auditory cortex. II. Prediction of unit responses to arbitrary dynamic spectra. Journal of Neurophysiology, 76, 3524–3534.

    CAS  PubMed  Google Scholar 

  • Kuo, R. I., & Wu, G. K. (2012). Generation of direction selectivity in the auditory system. Neuron, 73, 1016–1027.

    Article  CAS  PubMed  Google Scholar 

  • Li, N., Gittelman, J. X., & Pollak, G. D. (2010). Intracellular recordings reveal novel features of neurons that code interaural intensity disparities in the inferior colliculus. Journal of Neuroscience, 30, 14573–14584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marler, P. (2004). Science and birdsong: The good old days. In P. Marler & H. Slabbekoorn (Eds.), Nature’s music: The science of birdsong.Vol. 1. Amsterdam: Academic Press.

    Google Scholar 

  • Mayko, Z. M., Roberts, P. D., & Portfors, V. (2012). Inhibition shapes selectivity for vocalizations in the inferior colliculus of awake mice. Frontiers of Neural Circuits, doi: 10.3389/fncir.2012.00073

    Google Scholar 

  • Mittmann, D. H., & Wenstrup, J. J. (1995). Combination-sensitive neurons in the inferior colliculus. Hearing Research, 90, 185–191.

    Article  CAS  PubMed  Google Scholar 

  • Motts, S. D., & Schofield, B. R. (2009). Sources of cholinergic input to the inferior colliculus. Neuroscience, 160, 103–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuweiler, G. (1990). Auditory adaptations for prey capture in echolocating bats. Physiological Reviews, 70, 615–641.

    CAS  PubMed  Google Scholar 

  • O’Neill, W. E., & Suga, N. (1979). Target range-sensitive neurons in the auditory cortex of the mustache bat. Science, 203, 69–73.

    Article  PubMed  Google Scholar 

  • Payne, R. S., & McVay, S. (1971). Songs of humpback whales. Science, 173, 585–597.

    Article  CAS  PubMed  Google Scholar 

  • Pollak, G. D. (2012). Circuits for processing dynamic interaural intensity disparities in the inferior colliculus. Hearing Research, 288, 47–57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pollak, G. D. & Casseday, J. H. (1986) The neural basis of echolocation in bats. New York: Springer-Verlag.

    Google Scholar 

  • Pollak, G. D., Winer, J. A., & O’Neill, W. E. (1995). Perspectives on the functional organization of the mammalian auditory system: Why bats are good models. In A. N. Popper & R. R. Fay (Eds.), Hearing by bats (pp. 481–498). New York: Springer.

    Chapter  Google Scholar 

  • Pollak, G. D., Gittelman, J. X., Li, N., & Xie, R. (2011a). Inhibitory projections from the ventral nucleus of the lateral lemniscus and superior paraolivary nucleus create directional selectivity of frequency modulations in the inferior colliculus: A comparison of bats with other mammals. Hearing Research, 273, 134–144.

    Google Scholar 

  • Pollak, G. D., Xie, R., Gittelman, J. X., Andoni, S., & Li, N. (2011b). The dominance of inhibition in the inferior colliculus. Hearing Research, 274, 27–39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Portfors, C. V. (2004). Combination sensitivity and processing of communication calls in the inferior colliculus of the moustached bat Pteronotus parnellii. Anais da Academia Brasoleira de Ciencias, 76, 253–257.

    Article  Google Scholar 

  • Portfors, C. V., & Wenstrup, J. J. (1999). Delay-tuned neurons in the inferior colliculus of the mustached bat: Implications for analyses of target distance. Journal of Neurophysiology, 82, 1326–1338.

    CAS  PubMed  Google Scholar 

  • Portfors, C. V., & Wenstrup, J. J. (2002). Excitatory and facilitatory frequency response areas in the inferior colliculus of the mustached bat. Hearing Research, 168, 131–138.

    Article  PubMed  Google Scholar 

  • Portfors, C. V., & Felix, II, R. A. (2005). Spectral integration in the inferior colliculus of the CBA/CaJ mouse. Neuroscience, 136, 1159–1170.

    Google Scholar 

  • Portfors, C. V., Roberts, P. D., & Jonson, K. (2009). Over-representation of species-specific vocalizations in the awake mouse inferior colliculus. Neuroscience, 162, 486–500.

    Article  CAS  PubMed  Google Scholar 

  • Razak, K. A., & Fuzessery, Z. M. (2006). Neural mechanisms underlying selectivity for the rate and direction of frequency-modulated sweeps in the auditory cortex of the pallid bat. Journal of Neurophysiology, 96, 1303–1319.

    Article  PubMed  Google Scholar 

  • Razak, K. A., & Fuzessery, Z. M. (2009). GABA shapes selectivity for the rate and direction of frequency modulated sweeps in the auditory cortex. Journal of Neurophysiology, 102, 1366–1378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubsamen, R., & Betz, M. (1986). Control of echolocation pulses by neurons of the nucleus ambiguus in the rufous horseshoe bat, Rhinolophus rouxi. I. Single unit recordings in the ventral motor nucleus of the laryngeal nerves in spontaneously vocalizing bats. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 159, 675–687.

    Article  CAS  Google Scholar 

  • Rust, N. C., Schwartz, O., Movshon, J. A., & Simoncelli, E. P. (2005). Spatiotemporal elements of macaque v1 receptive fields. Neuron, 46, 945–956.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez, J. T., Gans, D., & Wenstrup, J. J. (2007). Contribution of NMDA and AMPA receptors to temporal patterning of auditory responses in the inferior colliculus. Journal of Neuroscience, 27, 1954–1963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez, J. T., Gans, D., & Wenstrup, J. J. (2008). Glycinergic “inhibition” mediates selective excitatory responses to combinations of sounds. Journal of Neuroscience, 28, 80–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider, D. M., & Woolley, S. M. (2011). Extra-classical tuning predicts stimulus-dependent receptive fields in auditory neurons. Journal of Neuroscience, 31, 11867–11878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuller, G. (1979). Coding of small sinusoidal frequency and amplitude modulations in the inferior colliculus of ‘CF-FM’ bat, Rhinolophus ferrumequinum. Experimental Brain Research, 34, 117–132.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, C., Tressler, J., Keller, H., Vanzant, M., Ezell, S., & Smotherman, M. (2007). The tiny difference between foraging and communication buzzes uttered by the Mexican free-tailed bat, Tadarida brasiliensis. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 193, 853–863.

    Article  PubMed  Google Scholar 

  • Simmons, J. A., Lavender, W. A., Lavender, B. A., Doroshow, C. A., Kiefer, S. W., Livingston, R., et al. (1974). Target structure and echo spectral discrimination by echolocating bats. Science, 186, 1130–1132.

    Article  CAS  PubMed  Google Scholar 

  • Simmons, J. A., Howell, D. J., & Suga, N. (1975). Information content of bat sonar echoes. American Scientist, 63, 204–215.

    CAS  PubMed  Google Scholar 

  • Suga, N. (1965) Analysis of frequency-modulated sounds by auditory neurons of echolocating bats. Journal of Physiology, 179, 26–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suga, N., & O’Neill, W.E. (1979) Neural axes representing target range in the auditory cortex of the mustached bat. Science, 206, 351–353.

    Article  CAS  PubMed  Google Scholar 

  • Suga, N., O’Neill, W. E., Kujirai, K., & Manabe, T. (1983). Specificity of combination-sensitive neurons for processing of complex biosonar signals in auditory cortex of the mustached bat. Journal of Neurophysiology, 49, 1573–1626.

    CAS  PubMed  Google Scholar 

  • Suga, N., Niwa, H., Taniguchi, I., & Margoliash, D. (1987). The personalized auditory cortex of the mustached bat: Adaptation for echolocation. Journal of Neurophysiology, 58, 643–654.

    Google Scholar 

  • Suga, N., Xiao, Z., Ma, X., & Ji, W. (2002). Plasticity and corticofugal modulation for hearing in adult animals. Neuron, 36, 9–18.

    Article  CAS  PubMed  Google Scholar 

  • Thaler, L., Arnott, S.R., & Goodale, M.A. (2011) Neural correlates of natural human echolocation in early and late blind echolocation experts. PLoS ONE, 6 (5) e20162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weedman, D. L., & Ryugo, D. K. (1996). Projections from auditory cortex to the cochlear nucleus in rats: Synapses on granule cell dendrites. Journal of Comparative Neurology, 371, 311–324.

    Article  CAS  PubMed  Google Scholar 

  • Wenstrup, J. J., & Grose, C. D. (1995). Inputs to combination-sensitive neurons in the medial geniculate body of the mustached bat: the missing fundamental. Journal of Neuroscience, 15, 4693–4711.

    CAS  PubMed  Google Scholar 

  • Wenstrup, J. J., Nataraj, K., & Sanchez, J. T. (2012). Mechanisms of spectral and temporal integration in the mustached bat inferior colliculus. Frontiers of Neural Circuits, doi:10.3389/fncir.2012.00075

    Google Scholar 

  • Winer, J. A., Larue, D. T., & Pollak, G. D. (1995). GABA and glycine in the central auditory system of the mustache bat: Structural substrates for inhibitory neuronal organization. Journal of Comparative Neurology, 355, 317–353.

    Article  CAS  PubMed  Google Scholar 

  • Winer, J. A., Larue, D. T., Diehl, J. J., & Hefti, B. J. (1998). Auditory cortical projections to the cat inferior colliculus. Journal of Comparative Neurology, 400, 147–174.

    Article  CAS  PubMed  Google Scholar 

  • Winer, J. A., Chernock, M. L., Larue, D. T., & Cheung, S. W. (2002). Descending projections to the inferior colliculus from the posterior thalamus and the auditory cortex in rat, cat, and monkey. Hearing Research, 168, 181–195.

    Article  PubMed  Google Scholar 

  • Woolley, S. M., Fremouw, T. E., Hsu, A., & Theunissen, F. E. (2005). Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds. Nature Neuroscience, 8, 1371–1379.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, Z., & Suga, N. (2002). Modulation of cochlear hair cells by the auditory cortex in the mustached bat. Nature Neuroscience, 5, 57–63.

    Article  CAS  PubMed  Google Scholar 

  • Xie, R., Meitzen, J., & Pollak, G. D. (2005). Differing roles of inhibition in hierarchical processing of species-specific calls in auditory brainstem nuclei. Journal of Neurophysiology, 94, 4019–4037.

    Article  PubMed  Google Scholar 

  • Xie, R., Gittelman, J. X., Li, N., & Pollak, G. D. (2008). Whole cell recordings of intrinsic properties and sound-evoked responses from the inferior colliculus. Neuroscience, 154, 245–256.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L. I., Tan, A. Y., Schreiner, C. E., & Merzenich, M. M. (2003). Topography and synaptic shaping of direction selectivity in primary auditory cortex. Nature, 424, 201–205.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to express my sincerest appreciation to the National Institutes of Health for their generous support of my research over the past 40 years. I also thank Carl Resler for his expertise with computers and his invaluable technical support throughout my career. Finally, I thank my graduate students, postdoctoral fellows, and all of my colleagues who have been so supportive and have taught me so much. Supported by NIH Grant DC 0078.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George D. Pollak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pollak, G.D. (2016). The Neural Processing of Frequency Modulations in the Auditory System of Bats. In: Fenton, M., Grinnell, A., Popper, A., Fay, R. (eds) Bat Bioacoustics. Springer Handbook of Auditory Research, vol 54. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3527-7_8

Download citation

Publish with us

Policies and ethics