Skip to main content

The Breuil-Schneider Conjecture: A Survey

  • Chapter
Advances in the Theory of Numbers

Part of the book series: Fields Institute Communications ((FIC,volume 77))

Abstract

This note is a survey of the Breuil-Schneider conjecture, based on the authors 30 min talk at the 13th conference of the Canadian Number Theory Association (CNTA XIII) held at Carleton University, June 16–20, 2014. We give an overview of the problem, and describe certain recent developments by the author and others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is the notation we will eventually use in Sect. 5 below, to distinguish it from \(F/\mathbb{Q}_{p}\).

  2. 2.

    Here we tacitly fix algebraic closures \(\bar{F}\hookrightarrow \bar{F}_{w}\) extending FF w , in order to identify the decomposition group \(\varGamma _{F_{w}} =\mathop{ \mathrm{Gal}}\nolimits (\bar{F}_{w}/F_{w})\) with a subgroup of Γ F . We say r w is unramified if its restriction to the inertia group \(I_{F_{w}} =\mathop{ \mathrm{Gal}}\nolimits (\bar{F}_{w}/F_{w}^{nr})\) is trivial.

  3. 3.

    Meaning the representation π sm (ρ) embeds into \(\text{Ind}_{U_{n}}^{\mathop{\mathrm{GL}}\nolimits _{n}}(\psi )\) for some additive character ψ ≠ 1.

  4. 4.

    Not to be confused with automorphic forms. For instance, the inner forms of \(\mathop{\mathrm{GL}}\nolimits (2)\) are the algebraic groups D ×, for quaternion algebras D, whereas the outer forms of \(\mathop{\mathrm{GL}}\nolimits (2)\) are the unitary groups in two variables.

  5. 5.

    We use the notation \(\tilde{F}\) to distinguish it from our p-adic base field \(F/\mathbb{Q}_{p}\).

  6. 6.

    An anti-equivalence between compact \(\mathcal{O}_{E}\)-modules and \(\varpi _{E}\)-adically complete \(\mathcal{O}_{E}\)-modules.

References

  1. E. Assaf, D. Kazhdan, E. de Shalit, Kirillov models and the Breuil-Schneider conjecture for \(\mathop{\mathrm{GL}}\nolimits _{2}(F)\). arXiv:1302.3060 (2013)

    Google Scholar 

  2. T. Barnet-Lamb, T. Gee, D. Geraghty, R. Taylor, Local-global compatibility for l = p, I. Ann. Fac. Sci. Toulouse Math. (6) 21(1), 57–92 (2012)

    Google Scholar 

  3. T. Barnet-Lamb, T. Gee, D. Geraghty, R. Taylor, Local-global compatibility for l = p, II. Ann. Sci. École Norm. Supérieure (4) 47(1), 165–179 (2014)

    Google Scholar 

  4. L. Berger, C. Breuil, Sur quelques representations potentiellement cristallines de \(\mathop{\mathrm{GL}}\nolimits _{2}(\mathbb{Q}_{p})\). Asterisque 330, 155–211 (2010)

    MathSciNet  Google Scholar 

  5. L. Berger, La correspondance de Langlands locale p-adique pour \(\mathop{\mathrm{GL}}\nolimits _{2}(\mathbb{Q}_{p})\), in Seminaire Bourbaki, vol. 2009/2010. Exposes 1012–1026. Asterisque, vol. 339, Exp. No. 1017 (2011), viii, 157–180

    Google Scholar 

  6. C. Breuil, Invariant \(\mathcal{L}\) et série spéciale p-adique. Ann. Sci. École Norm. Supérieure (4) 37(4), 559–610 (2004)

    Google Scholar 

  7. C. Bushnell, G. Henniart, The local Langlands conjecture for GL(2), in Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 335 (Springer, Berlin, 2006)

    Book  Google Scholar 

  8. G. Böckle, On the density of modular points in universal deformation spaces. Am. J. Math. 123(5), 985–1007 (2001)

    Article  MATH  Google Scholar 

  9. A. Borel, G. Harder, Existence of discrete cocompact subgroups of reductive groups over local fields. J. Reine Angew. Math. 298, 53–64 (1978)

    MATH  MathSciNet  Google Scholar 

  10. C. Breuil, P. Schneider, First steps towards p-adic Langlands functoriality. J. Reine Angew. Math. 610, 149–180 (2007)

    MATH  MathSciNet  Google Scholar 

  11. C. Breuil, The emerging p-adic Langlands programme, in Proceedings of the International Congress of Mathematicians, vol. II (Hindustan Book Agency, New Delhi, 2010), pp. 203–230

    Google Scholar 

  12. A. Caraiani, Local-global compatibility and the action of monodromy on nearby cycles. Duke Math. J. 161(12), 2311–2413 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Caraiani, M. Emerton, T. Gee, D. Geraghty, V. Pas̆kūnas, S.W. Shin, Patching and the p-adic local Langlands correspondence. Preprint (2013)

    Google Scholar 

  14. L. Clozel, P. Delorme, Le theoreme de Paley-Wiener invariant pour les groupes de Lie reductifs. Invent. Math. 77(3), 427–453 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  15. L. Clozel, On limit multiplicities of discrete series representations in spaces of automorphic forms. Invent. Math. 83(2), 265–284 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. P. Colmez, G. Dospinescu, V. Paskunas, The p-adic local Langlands correspondence for \(\mathop{\mathrm{GL}}\nolimits _{2}(\mathbb{Q}_{p})\). Camb. J. Math. 2, 1–47 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  17. D. de George, N. Wallach, Limit formulas for multiplicities in L 2(ΓG). Ann. Math. (2) 107(1), 133–150 (1978)

    Google Scholar 

  18. M. De Ieso, Existence de normes invariantes pour GL 2. J. Number Theory 133(8), 2729–2755 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Emerton, On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms. Invent. Math. 164(1), 1–84 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Emerton, Jacquet modules of locally analytic representations of p-adic reductive groups, I. Construction and first properties. Ann. Sci. École Norm. Supérieure (4) 39(5), 775–839 (2006)

    Google Scholar 

  21. M. Emerton, Local-global compatibility in the p-adic Langlands programme for \(\mathop{\mathrm{GL}}\nolimits _{2}/\mathbb{Q}\) (Draft dated March 23, 2011). Available at http://www.math.uchicago.edu/~emerton/preprints.html

    Google Scholar 

  22. M. Emerton, T. Gee, D. Savitt, Lattices in the cohomology of Shimura curves. Invent. Math. Invent. Math. 200(1), 1–96 (2015)

    Article  MathSciNet  Google Scholar 

  23. J.-M. Fontaine, B. Mazur, Geometric Galois representations, in Elliptic Curves, Modular Forms, & Fermat’s Last Theorem, Hong Kong, 1993. Number Theory, vol. I (International Press, Cambridge, 1995), pp. 41–78

    Google Scholar 

  24. J.-M. Fontaine, Représentations p-adiques, in Proceedings of the International Congress of Mathematicians, Warsaw, 1983, vols. 1, 2 (PWN, Warsaw, 1984), pp. 475–486

    Google Scholar 

  25. J.-M. Fontaine, M. Rapoport, Existence de filtrations admissibles sur des isocristaux. Bull. Soc. Math. Fr. 133(1), 73–86 (2005)

    MATH  MathSciNet  Google Scholar 

  26. B. Gross, Algebraic modular forms. Isr. J. Math. 113, 61–93 (1999)

    Article  MATH  Google Scholar 

  27. E. Grosse-Klonne, On the universal module of p-adic spherical Hecke algebras. Am. J. Math. 136(3), 599–652 (2014)

    Article  MathSciNet  Google Scholar 

  28. M. Harris, R. Taylor, The Geometry and Cohomology of Some Simple Shimura Varieties. With an Appendix by Vladimir G. Berkovich. Annals of Mathematics Studies, vol. 151 (Princeton University Press, Princeton, 2001)

    Google Scholar 

  29. Y. Hu, Normes invariantes et existence de filtrations admissibles. J. Reine Angew. Math. 634, 107–141 (2009)

    MATH  MathSciNet  Google Scholar 

  30. D. Kazhdan, E. de Shalit, Kirillov models and integral structures in p-adic smooth representations of GL 2(F). J. Algebra 353, 212–223 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. S. Kudla, The local Langlands correspondence: the non-Archimedean case, in Motives, Seattle, 1991. Proceedings of Symposia in Pure Mathematics, vol. 55, Part 2 (American Mathematical Society, Providence, 1994), pp. 365–391

    Google Scholar 

  32. C. Khare, J.-P. Wintenberger, Serre’s modularity conjecture, in Proceedings of the International Congress of Mathematicians, vol. II (Hindustan Book Agency, New Delhi, 2010), pp. 280–293

    Google Scholar 

  33. P. Schneider, Nonarchimedean Functional Analysis. Springer Monographs in Mathematics (Springer, Berlin, 2002), vi+156 pp.

    Google Scholar 

  34. P. Schneider, Continuous Representation Theory of p-Adic Lie Groups. International Congress of Mathematicians, vol. II (European Mathematical Society, Zurich, 2006), pp. 1261–1282

    Google Scholar 

  35. P. Schneider, J. Teitelbaum, Banach-Hecke algebras and p-adic Galois representations. Doc. Math. Extra Vol., 631–684 (2006)

    Google Scholar 

  36. A. Scholl, Motives for modular forms. Invent. Math. 100(2), 419–430 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  37. C. Sorensen, A proof of the Breuil-Schneider conjecture in the indecomposable case. Ann. Math. (2) 177(1), 367–382 (2013)

    Google Scholar 

  38. C. Sorensen, Eigenvarieties and invariant norms. Pac. J. Math. 275(1), 191–230 (2015)

    Article  MathSciNet  Google Scholar 

  39. J. Tate, Number theoretic background, in Automorphic Forms, Representations and L-Functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, 1977), Part 2. Proceedings of Symposia in Pure Mathematics, XXXIII (American Mathematical Society, Providence, 1979), pp. 3–26

    Google Scholar 

  40. M.-F. Vigneras, A criterion for integral structures and coefficient systems on the tree of PGL(2,F). Pure Appl. Math. Q. 4(4), (2008) [Special Issue: In honor of Jean-Pierre Serre, Part 1, pp. 1291–1316]

    Google Scholar 

  41. T. Wedhorn, The local Langlands correspondence for GL(n) over p-adic fields, in School on Automorphic Forms on GL(n). ICTP Lecture Notes, vol. 21 (Abdus Salam International Centre for Theoretical Physics, Trieste, 2008), pp. 237–320

    Google Scholar 

Download references

Acknowledgements

I would like to thank the organizers of CNTA XIII for a wonderful event in beautiful Ottawa, and for the opportunity to speak there. S.W. Shin read an early draft of this paper, and made comments; his feedback is greatly appreciated—as is the thorough reading of the anonymous referee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus M. Sorensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sorensen, C.M. (2015). The Breuil-Schneider Conjecture: A Survey. In: Alaca, A., Alaca, Ş., Williams, K. (eds) Advances in the Theory of Numbers. Fields Institute Communications, vol 77. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3201-6_10

Download citation

Publish with us

Policies and ethics