Skip to main content

From Diffusion to the Diffusion Tensor

  • Chapter
Diffusion Tensor Imaging

Abstract

The term “diffusion tensor imaging” (DTI) is used on many occasions to informally refer to anything related to diffusion-weighted imaging (DWI). From a formal point of view, however, DTI is the practice of fitting a tensor model to the DWI data. It is one of the simplest ways to model the DWI data that accounts, up to some extent, for the anisotropy in this kind of data. Exploiting this anisotropy is key to obtaining the characteristic directionally encoded color (DEC) maps and tractograms that are typically associated to the practice of DWI in general. Hence, it is not surprising many people use the term “DTI” in very different contexts. In this chapter, we aim to give the reader a feeling for what is really under the hood of the true art of DTI: obtaining these so-called diffusion tensors. What are they actually modeling? And, in this context, what is a tensor anyway? There’s a short and clear answer to this: the diffusion tensor describes the apparent diffusion coefficient (ADC), in function of direction. Hmm… “ADC” you say…?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42:288–92.

    Article  CAS  Google Scholar 

  2. Le Bihan D, Breton E. Imagerie de diffusion in vivo par résonance magnétique nucléaire. C R Acad Sci Paris. 1985;301(Série II):1109–12.

    Google Scholar 

  3. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401–7.

    Article  PubMed  Google Scholar 

  4. Basser PJ, Mattiello J, Le Bihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson Ser B. 1994;103:247–54.

    Article  CAS  Google Scholar 

  5. Pajevic S, Pierpaoli C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med. 1999;42:526–40.

    Article  CAS  PubMed  Google Scholar 

  6. Basser PJ, Mattiello J, Le Bihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66:259–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Basser PJ. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed. 1995;8:333–44.

    Article  CAS  PubMed  Google Scholar 

  8. Westin CF, Peled S, Gudbjartsson H, Kikinis R, Jolesz FA. Geometrical diffusion measures for MRI from tensor basis analysis. Proc Intl Soc Mag Reson Med. 1997;5:1742.

    Google Scholar 

  9. Chang LC, Jones DK, Pierpaoli C. RESTORE: robust estimation of tensors by outlier rejection. Magn Reson Med. 2005;53:1088–95.

    Article  PubMed  Google Scholar 

  10. Chang LC, Walker L, Pierpaoli C. Informed RESTORE: a method for robust estimation of diffusion tensor from low redundancy datasets in the presence of physiological noise artifacts. Magn Reson Med. 2012;68:1654–63.

    Article  PubMed Central  PubMed  Google Scholar 

Suggested Reading

  • Basser PJ, Özarslan E. Anisotropic diffusion: from the apparent diffusion coefficient to the apparent diffusion tensor. In: Jones DK, editor. Diffusion MRI: theory, methods, and applications. New York, NY: Oxford University Press; 2010.

    Google Scholar 

  • Kingsley PB. Introduction to diffusion tensor imaging mathematics: Part I. Tensors, rotations, and eigenvectors. Concept Magn Reson A. 2006;28:101–22.

    Article  Google Scholar 

  • Kingsley PB. Introduction to diffusion tensor imaging mathematics: Part II. Anisotropy, diffusion-weighting factors, and gradient encoding schemes. Concept Magn Reson A. 2006;28:123–54.

    Article  Google Scholar 

  • Kingsley PB. Introduction to diffusion tensor imaging mathematics: Part III. Tensor calculation, noise, simulations, and optimization. Concept Magn Reson A. 2006;28:155–79.

    Article  Google Scholar 

  • Jones DK, Basser PJ. “Squashing peanuts and smashing pumpkins”: how noise distorts diffusion-weighted MR data. Magn Reson Med. 2004;52:979–93.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thijs Dhollander PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dhollander, T. (2016). From Diffusion to the Diffusion Tensor. In: Van Hecke, W., Emsell, L., Sunaert, S. (eds) Diffusion Tensor Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3118-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3118-7_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3117-0

  • Online ISBN: 978-1-4939-3118-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics