Skip to main content

Concepts of Diffusion in MRI

  • Chapter
Diffusion Tensor Imaging

Abstract

In this chapter, we cover the basic concepts of diffusion from a non-mathematical perspective. From the random walk of a water molecule to the effect of obstacles on diffusion in biological tissue and the basic principles of configuring a magnetic resonance imaging machine to be sensitive to diffusion phenomena. We cover the important microstructural properties of central nervous system tissue and their impact on the diffusion characteristics of water in biological tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown R. A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants: and on the general existence of active molecules in inorganic bodies. Phil Mag. 1827;4:161–73.

    Google Scholar 

  2. Fick A. Concerns diffusion and concentration gradient. Ann Phys Lpz. 1855;170:59.

    Article  Google Scholar 

  3. Fick A. Über diffusion. Ann Phys. 1855;94:59.

    Article  Google Scholar 

  4. Einstein A. Über die von der molekularkinetischen Theorie der wärme gefordete Bewegung von in ruhenden Flüsigkeiten suspendierten Teilchen. Ann Physik. 1905;4:549–60.

    Article  Google Scholar 

  5. Einstein A. Investigations on the theory of Brownian movement. New York, NY: Dover Publications, Inc; 1926.

    Google Scholar 

  6. Levitan IB, Kaczmarek LK. The neuron: cell and molecular biology. 3rd ed. New York, NY: Oxford University Press; 2002.

    Google Scholar 

  7. Waxman SG, editor. The axon: structure, function and pathophysiology. New York, NY: Oxford University Press; 1995.

    Google Scholar 

  8. Hahn EL. Spin echoes. Phys Rev. 1950;80(4):580–94. doi:10.1103/PhysRev.80.580.

    Article  Google Scholar 

  9. Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev. 1954;94(3):630–8. doi:10.1103/PhysRev.94.630.

    Article  CAS  Google Scholar 

  10. Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time‐dependent field gradient. J Chem Phys. 1965;42(1):288–92. doi:10.1063/1.1695690.

    Article  CAS  Google Scholar 

  11. Le Bihan D, Breton E. Imagerie De Diffusion In Vivo Par Résonance Magnétique Nucléaire. Comptes Rendus De Académie Des Sciences De Paris. 1985;301:1109–12.

    Google Scholar 

  12. Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol. 2007;188(6):1622–35.

    Article  PubMed  Google Scholar 

  13. Lansdown DA. Quantitative diffusion tensor MRI-based fibre tracking of human skeletal muscle. J Appl Physiol. 2007;103(2):673–81.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Le Bihan D, Poupon C, Amadon A, Lethimonnier F. Artefacts and pitfalls in diffusion MRI. J Magn Reson. 2006;24(3):478–88.

    Article  Google Scholar 

  15. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med. 2005;53(6):1432–40.

    Article  PubMed  Google Scholar 

  16. Tournier J, Calamante F, Connelly A. Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging. NMR Biomed. 2013;2013:1099–492.

    Google Scholar 

  17. Alexander DC, Hubbard PL, Hall MG, Moore EA, Ptito M, Parker GJ, et al. Orientationally invariant indices of axon diameter and density from diffusion MRI. Neuroimage. 2010;52(4):1374–89.

    Article  PubMed  Google Scholar 

  18. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988;168(2):497–505.

    Article  PubMed  Google Scholar 

  19. Alexander DC. A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features. Magn Reson Med. 2008;60:439–48.

    Article  PubMed  Google Scholar 

Suggested Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Rowe PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rowe, M., Siow, B., Alexander, D.C., Ferizi, U., Richardson, S. (2016). Concepts of Diffusion in MRI. In: Van Hecke, W., Emsell, L., Sunaert, S. (eds) Diffusion Tensor Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3118-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3118-7_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3117-0

  • Online ISBN: 978-1-4939-3118-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics