Skip to main content

Self-imaging and Discrete Paraxial Optics

  • Chapter
Linear Canonical Transforms

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 198))

  • 1828 Accesses

Abstract

Coherent self-imaging, also known as the Talbot effect, describes Fresnel diffraction of strictly periodic wavefronts. Based on a phase-space interpretation of optical signals and systems we review a number of self-imaging phenomena, including the fractional Talbot effect. Recognizing Fresnel diffraction as merely one particular instance of the wider class of linear canonical transforms allows us to discuss various generalizations of self-imaging. Recognizing the discrete Fresnel transformation as a special case of the fractional Talbot effect leads to a definition of discrete linear canonical transformations, which preserve important properties of the continuous transformation for a subset of paraxial signals and systems. This subset can be used as a framework for practical implementations of discrete LCTs discrete linear canonical transform.

To the memory of Adolf Lohmann (1926–2013)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Alieva, F. Agullo-Lopez, Imaging in first-order optical systems. J. Opt. Soc. Am. A 13(12), 2375–2380 (1996)

    Article  ADS  Google Scholar 

  2. T. Alieva, A. Barbé, Fractional Fourier and Radon - Wigner transforms of periodic signals. Signal Process. 69(2), 183–189 (1998)

    Article  MATH  Google Scholar 

  3. T. Alieva, A. Barbé, Self-imaging in fractional Fourier transform systems. Opt. Commun. 152(1–3), 11–15 (1998)

    Article  ADS  Google Scholar 

  4. T. Alieva, A.M. Barbé, Self-fractional Fourier images. J. Mod. Opt. 46(1), 83–99 (1999)

    Article  ADS  MATH  Google Scholar 

  5. T. Alieva, M.J. Bastiaans, Powers of transfer matrices determined by means of eigenfunctions. J. Opt. Soc. Am. A 16(10), 2413–2418 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  6. T. Alieva, M.J. Bastiaans, Self-affinity in phase space. J. Opt. Soc. Am. A 17(4), 756–761 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  7. T. Alieva, M.J. Bastiaans, Dynamic and geometric phase accumulation by Gaussian-type modes in first-order optical systems. Opt. Lett. 33(15), 1659–1661 (2008)

    Article  ADS  Google Scholar 

  8. V. Arrizón, J. Ojeda-Castañeda, Multilevel phase gratings for array illuminators. Appl. Opt. 33, 5925–5931 (1994)

    Article  ADS  Google Scholar 

  9. V. Arrizón, J. Ojeda-Castañeda, Fresnel diffraction of substructured gratings: matrix description. Opt. Lett. 20, 118–120 (1995)

    Article  ADS  Google Scholar 

  10. V. Arrizón, J.G. Ibarra, J. Ojeda-Castañeda, Matrix formulation of the Fresnel transform of complex transmittance gratings. J. Opt. Soc. Am. A 13, 2414–2422 (1996)

    Article  ADS  Google Scholar 

  11. V. Arrizón, E. López-Olazagasti, A. Serrano-Heredia, Talbot array illuminators with optimum compression ratio. Opt. Lett. 21, 233–235 (1996)

    Article  ADS  Google Scholar 

  12. V. Arrizón, G. Rojo-Valázquez, J.G. Ibarra, Fractional Talbot effect: compact description. Opt. Rev. 7, 129–131 (2000)

    Article  Google Scholar 

  13. S. Atkins, B. Fischer, All-optical pulse rate multiplication using fractional Talbot effect and field-to-intensity conversion with cross-gain modulation. IEEE Photonics Technol. Lett. 15(1), 132–134 (2003)

    Article  ADS  Google Scholar 

  14. J. Azaña, Spectral Talbot phenomena of frequency combs induced by cross-phasemodulation in optical fibers. Opt. Lett. 30(3), 227–229 (2005)

    Article  ADS  Google Scholar 

  15. J. Azaña, L.R. Chen, General temporal self-imaging phenomena. J. Opt. Soc. Am. B 20(7), 1447–1458 (2003)

    Article  ADS  Google Scholar 

  16. J. Azaña, M.A. Muriel, Technique for multiplying the repetition rates of periodic trains of pulses by means of atemporal self-imaging effect in chirped fiber gratings. Opt. Lett. 24(23), 1672–1674 (1999)

    Article  ADS  Google Scholar 

  17. R. Barakat, The caculation of integrals encountered in optical diffraction theory, in Topics in Applied Physics, vol. 41, ed. by B.R. Frieden (Springer, Heidelberg, 1980)

    Google Scholar 

  18. M. Bastiaans, Application of the Wigner distribution function in optics, in The Wigner Distribution - Theory and Applications in Signal Processing, ed. by W. Mecklenbräuker, F. Hlawatsch (Elsevier, Amsterdam, 1997), pp. 375–426

    Google Scholar 

  19. P.A. Bélanger: Periodic restoration of pulse trains in a linear dispersive medium. IEEE Photonics Technol. Lett. 1, 71–72 (1989)

    Article  ADS  Google Scholar 

  20. N. Berger, B. Levit, B. Fischer, Optical comb filter based on spectral Talbot effect in uniform fibre Bragg gratings. Electron. Lett. 43(12), 665–667 (2007)

    Article  Google Scholar 

  21. K.H. Brenner, A discrete version of the Wigner distribution function, in Selected Papers on Phase-Space Optics, ed. by M. Testorf, J. Ojeda-Castañeda, A. Lohmann. Milestone, vol. 181 (SPIE, Bellingham, 2006)

    Google Scholar 

  22. C. Candan, M. Kutay, H. Ozaktas, The discrete fractional Fourier transform. IEEE Trans. Signal Process. 48(5), 1329–1337 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. J. Caraquitena, M. Beltrán, R. Llorente, J. Martí, M.A. Muriel, Spectral self-imaging effect by time-domain multilevel phase modulation of a periodic pulse train. Opt. Lett. 36(6), 858–860 (2011)

    Article  ADS  Google Scholar 

  24. G. Cariolaro, T. Erseghe, P. Kraniauskas, N. Laurenti, Multiplicity of fractional Fourier transforms and their relationships. IEEE Trans. Signal Process. 48(1), 227–241 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. J.M. Cowley, A.F. Moodie, Fourier images: I - the point source. Proc. Phys. Soc. Sect. B 70(5), 486 (1957)

    Google Scholar 

  26. H. Dammann, G. Groh, M. Kock, Restoration of faulty images of periodic objects by means of self-imaging. Appl. Opt. 10(6), 1454–1455 (1971)

    Article  ADS  Google Scholar 

  27. J.J. Ding, S.C. Pei, Eigenfunctions and self-imaging phenomena of the two-dimensional nonseparable linear canonical transform. J. Opt. Soc. Am. A 28(2), 82–95 (2011)

    Article  ADS  Google Scholar 

  28. B.Z. Dong, Y. Zhang, B.Y. Gu, G.Z. Yang, Numerical investigation of phase retrieval in a fractional Fourier transform. J. Opt. Soc. Am. A 14(10), 2709–2714 (1997)

    Article  ADS  Google Scholar 

  29. D. Dragoman, The Wigner distribution function of self-Fourier functions. J. Mod. Opt. 43(9), 1933–1938 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. J. Garcia, D. Mas, R. Dorsch, Fractional - Fourier - transform calculation through the fast-fourier-transform algorithm. Appl. Opt. 35, 7013–7018 (1996)

    Article  ADS  Google Scholar 

  31. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1969)

    Google Scholar 

  32. S. Granieri, O. Trabocchi, E.E. Sicre, Fractional Fourier transform applied to spatial filtering in the Fresnel domain. Opt. Commun. 119, 275–278 (1995)

    Article  ADS  Google Scholar 

  33. J.P. Guigay, On Fresnel diffraction by one-dimensional periodic objects, with application to structure determination of phase objects. Opt. Commun. 18, 677–682 (1971)

    Google Scholar 

  34. H. Hamam, Design of Talbot array illuminators. Opt. Commun. 131, 359–370 (1996)

    Article  ADS  Google Scholar 

  35. H. Hamam, Simplified linear formulation of Fresnel diffraction. Opt. Commun. 144, 89–98 (1997)

    Article  ADS  Google Scholar 

  36. H. Hamam, Design of array illuminators under spherical illumination. Appl. Opt. 37, 1393–1400 (1998)

    Article  ADS  Google Scholar 

  37. J.J. Healy, J.T. Sheridan, Fast linear canonical transforms. J. Opt. Soc. Am. A 27, 21–30 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  38. B.M. Hennelly, J.T. Sheridan, Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms. J. Opt. Soc. Am. A 22(5), 917–927 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  39. B. Hennelly, J.J. Healy, J.T. Sheridan, Sampling in phase space, in Phase-Space Optics: Fundamentals and Applications, Chap. 10, ed. by M. Testorf, B. Hennelly, J. Ojeda-Castañeda (McGraw-Hill, New York, 2009), pp. 309–336

    Google Scholar 

  40. B.M. Hennelly, D.P. Kelly, D.S. Monaghan, N. Pandey, Zoom algorithms for digital holography, in Information Optics and Photonics, Algorithms Systems and Applications (Springer, New York, 2010), pp. 187–204

    Google Scholar 

  41. J. Jahns, A.W. Lohmann, Temporal filtering by double diffraction. Appl. Opt. 43(22), 4339–4344 (2004)

    Article  ADS  Google Scholar 

  42. J. Jahns, E. ElJoudi, D. Hagedorn, S. Kinne, Talbot interferometer as a time filter. Optik Int. J. Light Electron Opt. 112(7), 295–298 (2001)

    Article  Google Scholar 

  43. T. Jannson, J. Jannson, Temporal self-imaging effect in single-mode fibers. J. Opt. Soc. Am. 71(11), 1373–1376 (1981)

    ADS  Google Scholar 

  44. T. Kozacki, Numerical errors of diffraction computing using plane wave spectrum decomposition. Opt. Commun. 281, 4219–4223 (2008)

    Article  ADS  Google Scholar 

  45. J.R. Leger, G.J. Swanson, Efficient array illuminator using binary-optics phase plates at fractional Talbot planes. Opt. Lett. 15, 288–290 (1990)

    Article  ADS  Google Scholar 

  46. B.Z. Li, R. Tao, Y. Wang, New sampling formulae related to linear canonical transform. Signal Process. 87(5), 983–990 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. J.P. Liu, Controlling the aliasing by zero-padding in the digital calculation of scalar diffraction. J. Opt. Soc. Am. A 29, 1956–1964 (2012)

    Article  ADS  Google Scholar 

  48. A.W. Lohmann, An array illuminator based on the Talbot effect. Optik 79, 41–45 (1988)

    Google Scholar 

  49. A.W. Lohmann, D. Mendlovic, Self-Fourier objects and other self-transform objects. J. Opt. Soc. Am. A 9, 2009–2012 (1992)

    Article  ADS  Google Scholar 

  50. A.W. Lohmann, D. Mendlovic, Image formation of a self-Fourier object. Appl. Opt. 33, 153–157 (1994)

    Article  ADS  Google Scholar 

  51. A. Lohmann, D. Silva, An interferometer based on the Talbot effect. Opt. Commun. 2, 413–415 (1971)

    Article  ADS  Google Scholar 

  52. D. Mas, J. Garcia, C. Ferreira, L.M. Bernardo, F. Marinho, Fast algorithms for free-space diffraction patterns calculation. Optics Commun. 164, 233–245 (1999)

    Article  ADS  Google Scholar 

  53. D. Mendlovic, H.M. Ozaktas, A.W. Lohmann, Self Fourier functions and fractional Fourier transforms. Optics Commun. 105, 36–38 (1994)

    Article  ADS  Google Scholar 

  54. H. Ozaktas, O. Arikan, M. Kutay, G. Bozdagt, Digital computation of the fractional fourier transform. IEEE Trans. Signal Process. 44, 2141–2150 (1996)

    Article  ADS  Google Scholar 

  55. K. Patorski, Self-imaging phenomenon, lateral shift of Fresnel images. Opt. Acta 30, 1255–1258 (1983)

    Article  ADS  Google Scholar 

  56. K. Patorski, The self-imaging phenomenon and its applications, in Progress in Optics, vol. 27, ed. by E. Wolf (Elsevier Science, Amsterdam, 1989), pp. 1–108

    Chapter  Google Scholar 

  57. S.C. Pei, J.J. Ding, Closed-form discrete fractional and affine Fourier transforms. IEEE Trans. Signal Process. 48(5), 1338–1353 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. S.C. Pei, J.J. Ding, Eigenfunctions of the canonical transform and the self-imaging problems in optical system, in Proceedings of the 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’00), vol. 1 (2000), pp. 73–76

    Google Scholar 

  59. S.C. Pei, J.J. Ding, Eigenfunctions of linear canonical transform. IEEE Trans. Signal Process. 50(1), 11–26 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  60. R. Piestun, J. Shamir, Generalized propagation-invariant wave fields. J. Opt. Soc. Am. A 15(12), 3039–3044 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  61. R. Piestun, Y.Y. Schechner, J. Shamir, Propagation-invariant wave fields with finite energy. J. Opt. Soc. Am. A 17(2), 294–303 (2000)

    Article  ADS  Google Scholar 

  62. D. Podanchuk, V. Kurashov, A. Goloborodko, V. Dan’ko, M. Kotov, N. Goloborodko, Wavefront sensor based on the Talbot effect with the precorrected holographic grating. Appl. Opt. 51(10), C125–C132 (2012)

    Article  Google Scholar 

  63. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C (Cambridge University Press, New York, 1992)

    MATH  Google Scholar 

  64. L. Rayleigh, On copying diffraction gratings, and on some phenomena connected therewith. Philos. Mag. 11, 196–205 (1881)

    Article  Google Scholar 

  65. M. Richman, T. Parks, R. Shenoy, Discrete-time, discrete-frequency time-frequency representations, in 1995 International Conference on Acoustics, Speech, and Signal Processing (ICASSP-95), vol. 2 (1995), pp. 1029–1032

    Google Scholar 

  66. M. Richman, T. Parks, R. Shenoy, Discrete-time, discrete-frequency, time-frequency analysis. IEEE Trans. Signal Process. 46(6), 1517–1527 (1998). doi: 10.1109/78.678465

    Article  ADS  MATH  Google Scholar 

  67. N.H. Salama, D. Patrignani, L.D. Pasquale, E.E. Sicre, Wavefront sensor using the talbot effect. Opt. Laser Technol. 31(4), 269–272 (1999)

    Article  ADS  Google Scholar 

  68. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics (Wiley, New York, 1991)

    Book  Google Scholar 

  69. B. Santhanam, J. McClellan, The discrete rotational Fourier transform. IEEE Trans. Signal Process. 44(4), 994–998 (1996)

    Article  ADS  Google Scholar 

  70. M.R. Schroeder, Number Theory in Science and Communication, 2nd edn. (Springer, Heidelberg, 1986)

    Book  MATH  Google Scholar 

  71. C. Siegel, F. Loewenthal, J. Balmer, A wavefront sensor based on the fractional talbot effect. Opt. Commun. 194, 265–275 (2001)

    Article  ADS  Google Scholar 

  72. L.B. Soldano, E.C.M. Pennings, Optical multi-mode interference devices based on self-imaging: principles and applications. J. Lightwave Technol. 13, 615–627 (1995)

    Article  ADS  Google Scholar 

  73. J. St. Collins, Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am. 60(9), 1168–1177 (1970)

    Article  ADS  Google Scholar 

  74. A. Stern, Sampling of linear canonical transformed signals. Signal Process. 86, 1421–1425 (2006)

    Article  MATH  Google Scholar 

  75. E. Sziklas, A. Siegman, Diffraction calculations using fast Fourier transform methods. Proc. IEEE 62, 410–412 (1974)

    Article  Google Scholar 

  76. H.F. Talbot, Facts relating to optical science, No. IV. Philos. Mag. 9, 401–407 (1836)

    Google Scholar 

  77. M. Testorf, Designing Talbot array illuminators with phase-space optics. J. Opt. Soc. Am. A 23, 187–192 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  78. M. Testorf, Self-imaging in phase space, in Phase-Space Optics: Fundamentals and Applications, Chap. 9, ed. by M. Testorf, B. Hennelly, J. Ojeda-Castañeda (McGraw-Hill, New York, 2009), pp. 279–307

    Google Scholar 

  79. M. Testorf, The phase-space approach to optical system theory. Opt. Photonics Lett. 6, 1330001 (2013). doi:10.1142/S1793528813300015.http://www.worldscientific.com/doi/abs/10.1142/S1793528813300015

  80. M.E. Testorf, M.A. Fiddy, Simulation of light propagation in planar-integrated free-space optics. Opt. Commun. 176(4–6), 365–372 (2000)

    Article  ADS  Google Scholar 

  81. M. Testorf, J. Ojeda-Castañeda, Fractional Talbot effect: analysis in phase space. J. Opt. Soc. Am. A 13, 119–125 (1996)

    Article  ADS  Google Scholar 

  82. M. Testorf, V. Arrizón, J. Ojeda-Castañeda, Numerical optimization of phase-only elements based on the fractional Talbot effect. J. Opt. Soc. Am. A 16, 97–105 (1999)

    Article  ADS  Google Scholar 

  83. M. Testorf, J. Ojeda-Castañeda, A.W. Lohmann, Selected Papers on Phase-Space Optics. SPIE Milestone Series, vol. MS 181 (SPIE, Bellingham, 2006)

    Google Scholar 

  84. M. Testorf, B. Hennelly, J. Ojeda-Castañeda, Phase-Space Optics: Fundamentals and Applications (McGraw-Hill, New York, 2009)

    Google Scholar 

  85. A. Torre, Linear Ray and Wave Optics in Phase Space (Elsevier, Amsterdam, 2005)

    Google Scholar 

  86. S.B. Tucker, J. Ojeda-Castañeda, W.T. Cathey, Matrix description of near field diffraction and the fractional Fourier transform. J. Opt. Soc. Am. A 16, 316–322 (1999)

    Article  ADS  Google Scholar 

  87. D.G. Voelz, M.C. Roggemann, Digital simulation of scalar optical diffraction: revisiting chirp function sampling criteria and consequences. Appl. Opt. 48, 6132–6142 (2009)

    Article  ADS  Google Scholar 

  88. C. Wang, J. Azaña, L.R. Chen, Spectral Talbot-like phenomena in one-dimensional photonic bandgapstructures. Opt. Lett. 29, 1590–1592 (2004)

    Article  ADS  Google Scholar 

  89. J.T. Winthrop, C.R. Worthington, Theory of Fresnel images I. Plane periodic objects in monochromatic light. J. Opt. Soc. Am. 55, 373–381 (1965)

    Google Scholar 

  90. X.G. Xia, On bandlimited signals with fractional Fourier transform. IEEE Signal Process. Lett. 3, 72–74 (1996)

    Article  ADS  Google Scholar 

  91. L. Zhao, J.J. Healy, J.T. Sheridan, Unitary discrete linear canonical transform: analysis and application. Appl. Opt. 52(7), C30–C36 (2013)

    Article  Google Scholar 

  92. X.H. Zou, W. Pan, B. Luo, M.Y. Wang, W.L. Zhang, Spectral Talbot effect in sampled fiber Bragg gratings with super-periodic structures. Opt. Express 15(14), 8812–8817 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Testorf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Testorf, M., Hennelly, B. (2016). Self-imaging and Discrete Paraxial Optics. In: Healy, J., Alper Kutay, M., Ozaktas, H., Sheridan, J. (eds) Linear Canonical Transforms. Springer Series in Optical Sciences, vol 198. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3028-9_9

Download citation

Publish with us

Policies and ethics