Skip to main content

Complex-Valued ABCD Matrices and Speckle Metrology

  • Chapter
Linear Canonical Transforms

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 198))

Abstract

We demonstrate that within the paraxial ray approximation the propagation of light through a complex optical system can be formulated in terms of a Huygens principle expressed with the complete system’s ABCD-matrix elements. As such, propagation through an optical system reduces to that of calculating the relevant matrix elements and substituting these into the expressions derived here. We have introduced complex-valued matrix element to represent apertures, thus having diffraction properties inherent in the description.

We have extended the treatments of Baues and Collins to include partially coherent light sources, optical elements of finite size, and distributed random inhomogeneity along the optical path. In many cases (e.g., laser beam propagation and Gaussian optics) we have been able to derive simple analytical expressions for the optical field quantities at an observation plane.

A series of laser-based optical measurement systems have been analyzed and analytical expressions for their main parameters have been given. Specifically, scattering from rough surfaces not giving rise to a fully developed speckle field, various anemometers and systems for measuring rotational velocity have been treated in order to show the benefits of the complex ABCD matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Kloos, Matrix Methods for Optical Layout (SPIE, Bellingham, 2007)

    Book  Google Scholar 

  2. P. Baues, Huygens principle in inhomogeneous isotropic media and a general integral equation applicable to optical resonators. Opto-Electronics 1, 37–44 (1969)

    Article  Google Scholar 

  3. S. Collins, Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am. 60, 1168–1177 (1970)

    Article  ADS  Google Scholar 

  4. H. Kogelnik, T. Li, Laser beams and resonators. Appl. Opt. 5, 1550 (1966)

    Google Scholar 

  5. P. Baues, The connection of geometrical optics with propagation of Gaussian beams and the theory of optical resonators. Opto-Electronics 1(2), 103–118 (1969)

    Google Scholar 

  6. A.E. Siegman, Lasers (University Science Books, Mill Valley, 1986)

    Google Scholar 

  7. H. Yura, S.G. Hanson, Optical beam wave-propagation through complex optical-systems. J. Opt. Soc. Am. A 4, 1931–1948 (1987)

    Article  ADS  Google Scholar 

  8. H. Yura, S.G. Hanson, T. Grum, Speckle-statistics and interferometric decorrelation effects in complex ABCD optical-systems. J. Opt. Soc. Am. A 10, 316–323 (1993)

    Article  ADS  Google Scholar 

  9. S.G. Hanson, T.F.Q. Iversen, R.S. Hansen, Dynamical properties of speckled speckles. Proceedings of SPIE- the International Society for Optical Engineering, 7387(1), pp. 738–716 (2010)

    Google Scholar 

  10. J.W. Goodman, Speckle Phenomena in Optics (Roberts & Company, Englewood, 2007)

    Google Scholar 

  11. H. Yura, B. Rose, S.G. Hanson, Dynamic laser speckle in complex ABCD optical systems. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 15, 1160–1166 (1998)

    Article  ADS  Google Scholar 

  12. R. Hansen, H. Yura, S.G. Hanson, B. Rose, Three-dimensional speckles: static and dynamic properties, in Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), Fourth International Conference on Correlation Optics, 1999, ed. by O. Angelsky

    Google Scholar 

  13. R. Hansen, H. Yura, S.G. Hanson, First-order speckle statistics: an analytic analysis using ABCD matrices. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 14, 3093–3098 (1997)

    Article  ADS  Google Scholar 

  14. E. Jakeman, W.T. Welford, Speckle statistics in imaging systems. Opt. Commun. 21, 72–79 (1977)

    Article  ADS  Google Scholar 

  15. H. Yura, S. Hanson, Variance of intensity for Gaussian statistics and partially developed speckle in complex ABCD optical systems. Opt. Commun. 228, 263–270 (2003)

    Article  ADS  Google Scholar 

  16. B. Rose, H. Imam, S. Hanson, H. Yura, Effects of target structure on the performance of laser time-of-flight velocimeter systems. Appl. Opt. 36, 518–533 (1997)

    Article  ADS  Google Scholar 

  17. S.G. Hanson, H.T. Yura, Statistics of spatially integrated speckle intensity difference. J. Opt. Soc. Am. A 26, 371–375 (2009)

    Article  ADS  Google Scholar 

  18. H. Yura, S. Hanson, Effects of receiver optics contamination on the performance of laser velocimeter systems. J. Opt. Soc. Am. A 13, 1891–1902 (1996)

    Article  ADS  Google Scholar 

  19. W. McKinley, H. Yura, S. Hanson, Optical system defect propagation in ABCD systems. Opt. Lett. 13, 333–335 (1988)

    Article  ADS  Google Scholar 

  20. T. Shirai, E. Wolf, Coherence and polarization of electromagnetic beams modulated by random phase screens and their changes on propagation in free space. J. Opt. Soc. Am. A Opt. Image Sci. Vis 21, 1907–1916 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  21. T. Shirai, Some consequences of the van Cittert-Zernike theorem for partially polarized stochastic electromagnetic fields. Opt. Lett. 34, 3761–3763 (2009)

    Article  ADS  Google Scholar 

  22. S.G. Hanson, W. Wang, M.L. Jakobsen, M. Takeda, Coherence and polarization of electromagnetic beams modulated by random phase screens and their changes through complex ABCD optical systems. J. Opt. Soc. Am. A 25, 2338–2346 (2008)

    Article  ADS  Google Scholar 

  23. M. Takeda, W. Wang, S.G. Hanson, Polarization speckles and generalized Stokes vector wave: a review, in Speckle 2010: Optical Metrology, vol. 7387 (2010), p. 73870V

    Google Scholar 

  24. B. Rose, H. Imam, S.G. Hanson, H.T. Yura, R.S. Hansen, Laser-speckle angular-displacement sensor: theoretical and experimental study. Appl. Opt. 37, 2119–2129 (1998)

    Article  ADS  Google Scholar 

  25. Z. Meng, B. Liu, Research on torsional vibration non-contact measurement of rotary machine, in Proceedings of SPIE--The International Society for Optical Engineering 6280, 2006

    Google Scholar 

  26. B. Rose, H. Imam, S. Hanson, H. Yura, A laser speckle sensor to measure the distribution of static torsion angles of twisted targets. Meas. Sci. Technol. 9, 42 (1998)

    Article  ADS  Google Scholar 

  27. B. Rose, H. Imam, S.G. Hanson, Non-contact laser speckle sensor for measuring one-and two-dimensional angular displacement Capteur non-contact de laser speckle pour mesurer le displacement angulaire: une ou deux dimensions. J. Opt. 29, 115–120 (1998)

    Article  ADS  Google Scholar 

  28. Y. Aizu, T. Ushizaka, T. Asakura, Measurements of flow velocity in a microscopic region using a transmission grating: elimination of directional ambiguity. Appl. Opt. 24, 636–640 (1985)

    Article  ADS  Google Scholar 

  29. M.L. Jakobsen, H.T. Yura, S.G. Hanson, Spatial filtering velocimetry of objective speckles for measuring out-of-plane motion. Appl. Opt. 51, 1396–1406 (2012)

    Article  ADS  Google Scholar 

  30. M.L. Jakobsen, H.T. Yura, S.G. Hanson, Speckles and their dynamics for structured target illumination: optical spatial filtering velocimetry. J. Opt. A Pure Appl. Opt. 11, 1–9 (2009).

    Google Scholar 

  31. J. Bilbro, Atmospheric laser Doppler velocimetry – an overview. Opt. Eng. 19, 533–542 (1980)

    Article  ADS  Google Scholar 

  32. L. Drain, Doppler velocimetry. Laser Focus Fiberoptic Technol. 16, 68–80 (1980)

    Google Scholar 

  33. M. Beck, Correlation in instruments – cross-correlation flowmeters. J. Phys. E Sci. Instrum. 14, 7–19 (1981)

    Article  ADS  Google Scholar 

  34. B. Rose, H. Imam, L. Lading, S. Hanson, Time-of-flight velocimetry: bias and robustness, in Technical Digest Series – Optical Society of America, vol. 14 (1996), pp. 68–70

    Google Scholar 

  35. H. Yura, S.G. Hanson, Laser-time-of-flight velocimetry – analytical solution to the optical-system based on ABCD matrices. J. Opt. Soc. Am. A 10, 1918–1924 (1993)

    Article  ADS  Google Scholar 

  36. H. Yura, S.G. Hanson, L. Lading, Laser-doppler velocimetry – analytical solution to the optical system including the effects of partial coherence of the target. J. Opt. Soc. Am. A 12, 2040–2047 (1995)

    Article  ADS  Google Scholar 

  37. A.D. Wheelon, Electromagnetic Scintillation (University Press, Cambridge, 2001)

    Google Scholar 

  38. H. Yura, S.G. Hanson, 2nd-order statistics for wave propagation through complex optical systems. J. Opt. Soc. Am. A 6, 564–575 (1989)

    Article  ADS  Google Scholar 

  39. L.C. Andrews, R.L. Philips, Laser Beam Propagation Through Random Media, 2nd edn. (SPIE, Bellingham, WA 98227–0010 USA, 2005)

    Google Scholar 

  40. L. Thrane, H. Yura, S. Hanson, P. Andersen, Optical coherence tomography of heterogeneous tissue: calculation of the heterodyne signal, in Conference on Anonymous Lasers and Electro-Optics Europe, 1998. 1998 CLEO/Europe. (IEEE, Glasgow, Scotland, 1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steen G. Hanson .

Editor information

Editors and Affiliations

A.1 Appendix

A.1 Appendix

MATHEMATICA program for calculation of the compound 1D matrix for a series of optical elements:

(* Program: optics.m . Written by Lilybeth *)

(* This program displays the total matrix modeling the elements in a complex optical system. It is achieved by accumulating the product of partial matrices from the predefined functions for a lens, free space parameter, or a limited aperture parameter.

    Further operations with the total matrix can be accomplished by assigning it to a variable. *)

(* This program requires the standard package ReIm.m. Reference:

    Programming in Mathematica, by Maeder. Pag 243 *)

BeginPackage["Optics`", "Algebra`ReIm`"]

Lens::usage = "Lens[f] generates a matrix that models this element."

Aperture::usage = "Aperture[r] generates a matrix that models this element."

FreeSpace::usage = "FreeSpace[z] generates a matrix that models this element."

t = {{1,0}, {0,1}} (* initializing global variable *)

Begin["`Private`"]

Print["This program generates a total matrix according to the elements of your optical system."];

Print["Please select your choice by entering Lens[f], Aperture[r,k], or FreeSpace[z]."]

Totalmatrix[m_] := t = m.t;

            Return[t]

        Lens[f_] :=

        Block[{ml},

             f/: Im[f] = 0;

            ml = {{1,0}, {−1/f, 1}};

            Print["Lens matrix is ", ml];

            m = ml;

            Totalmatrix[m]

]

Aperture[r_,k_] :=

        Block[{ma},

            r/: Im[r] = 0; k/: Im[k] = 0;

            ma = {{1,0}, {−(2 I)/(k*r^2), 1}};

            Print["Aperture matrix is", ma];

              m = ma;

            Totalmatrix[m]

]

FreeSpace[z_] :=

         Block[{mz},

             z/: Im[z] = 0;

             mz = {{1,z}, {0,1}};

             Print["FreeSpace matrix is", mz];

         m = mz;

Totalmatrix[m]

]

End[]

EndPackage[]

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hanson, S.G., Jakobsen, M.L., Yura, H.T. (2016). Complex-Valued ABCD Matrices and Speckle Metrology. In: Healy, J., Alper Kutay, M., Ozaktas, H., Sheridan, J. (eds) Linear Canonical Transforms. Springer Series in Optical Sciences, vol 198. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3028-9_14

Download citation

Publish with us

Policies and ethics