Skip to main content

Analyzing Digital Holographic Systems with the LCT

  • Chapter
Linear Canonical Transforms

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 198))

Abstract

Digital holography is an electronic means of measuring the complex amplitude of an optical wavefield using CCD or CMOS arrays. With an appropriate reconstruction algorithm the intensity values registered by the pixels produce images of a particular (object) scene. These holographic systems are very sensitive to even small vibrations or deformations of an object, mainly due to the phase information that is also recovered by the measurement. Hence these systems are useful in a wide array of different metrology problems. It is important that we somehow quantify the information that can be recovered with such a detection scheme; better if we can provide a theoretical framework to optimize an optical system design for a given metrology problem. In this manuscript we show how the Linear Canonical Transform can fulfill this role and can optimally match the space-bandwidth product (SBP) of a signal to be measured with the SBP of a CCD/CMOS detector array. We provide formulae that determine the performance of generalized holographic optical systems (containing lenses and sections of free space), taking into account the finite extent of the CCD array, the size of the pixels, and the spacing between them. Some illustrative examples are presented, with associated numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.W. Goodman, R.W. Lawrence, Digital image formation from electronically detected holograms. Appl. Phys. Lett. 11, 77–79 (1967)

    Article  ADS  Google Scholar 

  2. M.A. Kronrod, N.S. Merzlyakov, L.P. Yaroslavskii, Reconstruction of a hologram with a computer. Sov. Phys. Tech. Phys. 17, 333–334 (1972)

    ADS  Google Scholar 

  3. L. Onural, P.D. Scott, Digital decoding of in-line holograms. Opt. Eng. 26, 261124 (1987)

    Article  ADS  Google Scholar 

  4. U. Schnars, W. Jueptner, Direct recording of holograms by a CCD target and numerical reconstruction. Appl. Opt. 33, 179–181 (1994)

    Article  ADS  Google Scholar 

  5. T. Kreis, W. Juptner, Suppression of the dc term in digital holography. Opt. Eng. 36, 2357–2360 (1997)

    Article  ADS  Google Scholar 

  6. T.M. Kreis, Frequency analysis of digital holography. Opt. Eng. 41, 771–778 (2002)

    Article  ADS  Google Scholar 

  7. T.M. Kreis, Frequency analysis of digital holography with reconstruction by convolution. Opt. Eng. 41, 1829–1839 (2002)

    Article  ADS  Google Scholar 

  8. A. Stern, B. Javidi, Analysis of practical sampling and reconstruction from Fresnel fields. Opt. Eng. 43, 239–250 (2004)

    Article  ADS  Google Scholar 

  9. P. Picart, J. Leval, D. Mounier, S. Gougeon, Some opportunities for vibration analysis with time averaging in digital Fresnel holography. Appl. Opt. 44, 337–343 (2005)

    Article  ADS  Google Scholar 

  10. L. Xu, X. Peng, Z. Guo, J. Miao, A. Asundi, Imaging analysis of digital holography. Opt. Express 13, 2444–2452 (2005)

    Article  ADS  Google Scholar 

  11. J. Garcia-Sucerquia, W. Xu, S.K. Jericho, P. Klages, M.H. Jericho, H.J. Kreuzer, Digital in-line holographic microscopy. Appl. Opt. 45, 836–850 (2006)

    Article  ADS  Google Scholar 

  12. P. Picart, J. Leval, General theoretical formulation of image formation in digital Fresnel holography. J. Opt. Soc. Am. A 25, 1744–1761 (2008)

    Article  ADS  Google Scholar 

  13. D.P. Kelly, B.M. Hennelly, C. McElhinney, T.J. Naughton, A practical guide to digital holography and generalized sampling. Proc. SPIE 7072, 707215 (2008)

    Article  Google Scholar 

  14. D.P. Kelly, B.M. Hennelly, N. Pandey, T.J. Naughton, W.T. Rhodes, Resolution limits in practical digital holographic systems. Opt. Eng. 48, 095801 (2009)

    Article  ADS  Google Scholar 

  15. Y. Hao, A. Asundi, Resolution analysis of a digital holography system. Appl. Opt. 50, 183–193 (2011)

    Article  ADS  Google Scholar 

  16. D.P. Kelly, B.M.H.J.J. Healy, J.T. Sheridan, Quantifying the 2.5D imaging performance of digital holographic systems. J. Eur. Opt. Soc. Rap. Public. 6(11034) (2011)

    Google Scholar 

  17. M. Leclercq, P. Picart, Digital Fresnel holography beyond the Shannon limits. Opt. Express 20, 18303–18312 (2012)

    Article  ADS  Google Scholar 

  18. D. Claus, D. Iliescu, P. Bryanston-Cross, Quantitative space-bandwidth product analysis in digital holography. Appl. Opt. 50, H116–H127 (2011)

    Article  Google Scholar 

  19. D. Claus, D. Iliescu, J. Watson, J. Rodenburg, Comparison of different digital holographic setup configurations, in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2012), p. DM4C.3

    Google Scholar 

  20. H. Jin, H. Wan, Y. Zhang, Y. Li, P. Qiu, The influence of structural parameters of CCD on the reconstruction image of digital holograms. J. Mod. Opt. 55, 2989–3000 (2008)

    Article  Google Scholar 

  21. I. Yamaguchi, T. Zhang, Phase-shifting digital holography. Opt. Lett. 22, 1268–1270 (1997)

    Article  ADS  Google Scholar 

  22. G.-S. Han, S.-W. Kim, Numerical correction of reference phases in phase-shifting interferometry by iterative least-squares fitting. Appl. Opt. 33, 7321–7325 (1994)

    Article  ADS  Google Scholar 

  23. Z. Wang, B. Han, Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms. Opt. Lett. 29, 1671–1673 (2004)

    Article  ADS  Google Scholar 

  24. D.S. Monaghan, D.P. Kelly, N. Pandey, B.M. Hennelly, Twin removal in digital holography using diffuse illumination. Opt. Lett. 34, 3610–3612 (2009)

    Article  ADS  Google Scholar 

  25. F. Gori, Fresnel transform and sampling theorem. Opt. Commun. 39, 293–297 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  26. L. Onural, Sampling of the diffraction field. Appl. Opt. 39, 5929–5935 (2000)

    Article  ADS  Google Scholar 

  27. A. Stern, B. Javidi, Sampling in the light of Wigner distribution. J. Opt. Soc. Am. A 21, 360–366 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Stern, B. Javidi, Sampling in the light of Wigner distribution: errata. J. Opt. Soc. Am. A 21, 2038 (2004)

    Article  ADS  Google Scholar 

  29. J. Goodman, Introduction to Fourier Optics, 2nd edn. (McGraw-Hill, New York, 1966)

    Google Scholar 

  30. S.A. Collins Jr., Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am. 60, 1168–1177 (1970)

    Article  ADS  Google Scholar 

  31. J.J. Healy, B.M. Hennelly, J.T. Sheridan, Additional sampling criterion for the linear canonical transform. Opt. Lett. 33, 2599–2601 (2008)

    Article  ADS  Google Scholar 

  32. J.J. Healy, J.T. Sheridan, Uniform sampling for signals with finite instantaneous bandwidth, in Proceedings of the Irish Systems and Signals Conference, 2009

    Google Scholar 

  33. J.J. Healy, J.T. Sheridan, Fast linear canonical transforms. J. Opt. Soc. Am. A 27, 21–30 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  34. F. Oktem, H.M. Ozaktas, Exact relation between continuous and discrete linear canonical transforms. IEEE Signal Process. Lett. 16, 727–730 (2009)

    Article  ADS  Google Scholar 

  35. A. Koc, H.M. Ozaktas, L. Hesselink, Fast and accurate algorithm for the computation of complex linear canonical transforms. J. Opt. Soc. Am. A 27, 1896–1908 (2010)

    Article  ADS  Google Scholar 

  36. Personal communication with Lysann Megel, Masters thesis, Technical University of Ilmenau, 2012

    Google Scholar 

  37. E.N. Leith, J. Upatnieks, Reconstructed wavefronts and communication theory. J. Opt. Soc. Am. 52, 1123–1128 (1962)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

DPK is a Junior-Stiftungsprofessor of “Optic design, modeling and simulation” supported by Carl-Zeiss-Stiftung (FKZ: 21-0563-2.8/121/1). JTS acknowledges the support of the Science Foundation Ireland and Enterprise Ireland under the National Development Plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien P. Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kelly, D.P., Sheridan, J.T. (2016). Analyzing Digital Holographic Systems with the LCT. In: Healy, J., Alper Kutay, M., Ozaktas, H., Sheridan, J. (eds) Linear Canonical Transforms. Springer Series in Optical Sciences, vol 198. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3028-9_12

Download citation

Publish with us

Policies and ethics