Skip to main content

Musculoskeletal Injuries During Military Initial Entry Training

  • Chapter
  • First Online:
Musculoskeletal Injuries in the Military

Abstract

The US military recruits and trains approximately 180,000 new recruits every year. Up to 31 % of these recruits fail to complete training for various reasons including musculoskeletal injuries. The cost of attrition is estimated at $ 57,500 per recruit who fails to complete training. In addition to the monetary cost, these injuries represent a major public health problem as many trainees sustain injuries that contribute to long-term disability. The most common injury unique to Initial Entry Training (IET) is bone stress injury. Bone stress injuries fall along a spectrum from stress reaction which is a painful condition with no macroscopic bone damage to complete stress fracture where there is a macroscopic fracture which may require surgical stabilization. The most costly common injury among trainees is the femoral neck stress fracture. While this injury represents only 5–10 % of IET injuries, the estimated cost of a femoral neck stress fracture is approximately $ 100,000. Because of the severity of this injury, all medical providers in IET clinics must carefully rule out this injury in trainees before proceeding to further rehabilitation or returning to training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Population representation in the military services: Fiscal Year 2011 Summary Report. Office of the Under Secretary of Defense, Personnel and Readiness. http://prhome.defense.gov/rfm/MPP/ACCESSION%20POLICY/PopRep2011/index.html. Accessed 25. June 2013.

  2. Frequently asked questions about recruiting. 2013. http://www.usarec.army.mil/support/ faqs.htm#costper. Accessed 13. June 2013.

  3. Jones, BH, KG Hauret, Piskator DE. Review of the literature on attrition from the military services 2004;1–105.

    Google Scholar 

  4. DeKonig B. Recruit Medicine. Textbooks of military medicine. Washington, DC: Fort Sam Houston, (Tex.: Falls Church, Va.: Office of The Surgeon General, U.S. Army: Borden Institute, Walter Reed Army Medical Center; U.S. Army Medical Dept. Center and School); 2006.

    Google Scholar 

  5. National Research Council. Physical fitness and musculoskeletal injury. In: Sackett PR, Mavor AS, Editors. Assessing fitness for military enlistment: physical, medical, and mental health standards. Washington, DC: National Academies Press; 2006. pp. 66–108.

    Google Scholar 

  6. 19K10-One Station Unit Training Program of Instruction. 2012. http://www.benning.army.mil/armor/194th/content/PDF/19K_OSUT_POI.pdf. Accessed 30 June 2015.

  7. Burr DB, Milgrom C. Musculoskeletal fatigue and stress fractures. Boca Raton: CRC Press; 2001. pp. 1–36.

    Google Scholar 

  8. Fitzgerald RH, Kaufer H, Malkani AL. Orthopaedics. St. Louis: Mosby; 2002.

    Google Scholar 

  9. Milgrom C, Giladi M, Kashtan J, et al. A prospective study of the effect of a shock-absorbing orthotic device on the incidence of stress fractures in military recruits. Foot Ankle. 1985;6:101–4.

    Article  CAS  PubMed  Google Scholar 

  10. Chen JH, Liu. C, You L, Simmons CA. Boning up on Wolf’s law: mechanical regulation of the cells that make and maintain bone. J Biomech. 2010;43:108–18.

    Article  PubMed  Google Scholar 

  11. Romani WA, Perrin DH, Dussault RG, Ball DW, Kahler DM. Identification of tibial stress fractures using therapeutic continuous ultrasound. J Orthop Sports Phys Ther. 2000;30:444–52.

    Article  CAS  PubMed  Google Scholar 

  12. Taylor D, Casolari E, Bignardi C. Predicting stress fractures using a probabilistic model of damage, repair and adaptation. J Orthop Res. 2004;22:487–94.

    Article  PubMed  Google Scholar 

  13. Armstrong DW 3rd, Rue JP, Wilckens JH, Frassica FJ. Stress fracture injury in young military men and women. Bone. 2004;35(3):806–16.

    Article  PubMed  Google Scholar 

  14. Almeida SA, Williams KM, Shaffer RA, Brodine SK. Epidemiological patterns of musculoskeletal injuries and physical training. Med Sci Sports Exerc. 1999;31:1176–82.

    Article  CAS  PubMed  Google Scholar 

  15. Kaufman KR, SK Brodine, RA Shaffer, CW Johnson, Cullison TR. The effect of foot structure and range of motion on musculoskeletal overuse injuries. Am J Sports Med. 1999;27:585–93.

    CAS  PubMed  Google Scholar 

  16. Linenger JM, West LA. Epidemiology of soft tissue/musculoskeletal injury among US ­Marine recruits undergoing basic training. Mil Med. 1992;157:491–3.

    CAS  PubMed  Google Scholar 

  17. Brudvig TJ, Gudger TD, Obermeyer L. Stress fractures in 295 trainees: a one-year study of incidence as related to age, sex, and race. Mil Med. 1983;148:666–7.

    CAS  PubMed  Google Scholar 

  18. Jones BH, Bovee MW, Harris JM III, et al. Intrinsic risk factors for exercise-related injuries among male and female Army trainees. Am J Sports Med 1993;21:705–10.

    Article  CAS  PubMed  Google Scholar 

  19. Knapik J, Montain SJ, McGraw S, Grier T, Ely M, Jones BH. Stress fracture risk factors in basic combat training. Int J Sports Med. 2012;33:940–6.

    Article  CAS  PubMed  Google Scholar 

  20. Macleod MA, Houston AS, Sanders I, Anagnostopoulos C. Incidence of trauma related to stress fractures and shin splints in male and female Army recruits: retrospective case study. BMJ. 1999;318:29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Mattila VM, Niva M, Kiuru M, Pihlajmaki H. Risk factors for bone stress injuries: a follow-up study of 102,515 person-years. Med Sci Sports Exerc. 2007;39:1061–6.

    Article  PubMed  Google Scholar 

  22. Proztman RR. Physiologic performance of women compared to men. Observations of ­cadets at the United States Military Academy. Am J Sports Med. 1979;7:191–4.

    Article  Google Scholar 

  23. Yale J. A statistical analysis of 3,657 consecutive fatigue fractures of the distal lower ­extremities. J Am Podiatry Assoc. 1976;66:739–48.

    Article  CAS  PubMed  Google Scholar 

  24. Bensel CK, Kish RN. Lower extremity disorders among men and women in Army basic training and effects of two types of boots. (Technical report Matick TR-83/026). Natick: US Army Natick Research and Development Laboratories; 1983.

    Google Scholar 

  25. Bijur PE, Horodyski M, Egerton W, Kurzon M, Lifrak S, Friedman S. Comparison of injury during cadet basic training by gender. Arch Pediatr Adolesc Med. 1997;151:456–61.

    Article  CAS  PubMed  Google Scholar 

  26. Canham ML, Knapik JJ, Smutek MA. Training, physical performance, and injuries among men and women preparing for occupations in the Army. In: Kumas S, editor. Advances in occupational ergonomics and safety: proceedings of the XIIIth Annual International Occupational Ergonomics and Safety Conference 1998. Washington, DC: IOS Press; 1998. pp. 711–14.

    Google Scholar 

  27. Kowal D. Nature and causes of injuries in women resulting from an endurance training program. Am J Sports Med. 1980;8:265–9.

    Article  CAS  PubMed  Google Scholar 

  28. Protzman RR, Griffis CC. Comparative stress fracture incidence in males and females in equal training environments. Athletic Train. 1977;12:126–30.

    Google Scholar 

  29. Reinker L, Ozbourne S. A comparison of male and female orthopaedic pathology in basic training. Mil Med. 1979;143:532–6.

    Google Scholar 

  30. Glorioso JE, Leadbetter WB. Femoral supracondylar stress fractures. Phys Sportsmed. 2002;30:25–8.

    Article  PubMed  Google Scholar 

  31. Otis CL, Drinkwater B, Johnson M, Loucks A, Wilmore J. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc. 1997;29:i–ix.

    Article  CAS  PubMed  Google Scholar 

  32. Gardner LI Jr, Dziados JE, Jones BH, et al. Prevention of lower extremity stress fractures: a controlled trial of shock absorbent insole. Am J Public Health. 1988;78:1563–7.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Milgrom C, Finestone A, Shlamkovitch N et al. Youth is a risk factor for stress fractures: a study of 783 infantry recruits. J Bone Joint Surg Br. 1994;76:20–2.

    CAS  PubMed  Google Scholar 

  34. Beck TJ, Ruff CB, Mourtada FA, et al. Dual energy x-ray absorptiometry derived structural geometry for stress fracture prediction in male U.S. Marine Corps recruits. J Bone Miner Res. 1996;11:645–53.

    Article  CAS  PubMed  Google Scholar 

  35. Giladi M, Milgrom C, Simkin A, et al. Stress fractures and tibial bone width. A risk factor. J Bone Joint Surg Br. 1987;69:326–9.

    CAS  PubMed  Google Scholar 

  36. Giladi M, Milgrom C, Simkin A, Danon Y. Stress fractures. Identifiable risk factors. Am J Sports Med. 1991;19:647–52.

    Article  CAS  PubMed  Google Scholar 

  37. Milgrom C, Finestone A, Sharkey N. Metatarsal strains are sufficient to cause fatigue fracture during cyclic overloading. Foot Ankle Int. 2002;23:230–5.

    CAS  PubMed  Google Scholar 

  38. Pate RR, Wang CY, Dowda M, Farrell SW, O’Neill JR. Cardiorespiratory fitness levels among US youth 12–19 years of age: findings from 1999–2002 national health and nutrition examination survey. Arch Pediatr Adolesc Med. 2006;160(10):1005–12.

    Article  PubMed  Google Scholar 

  39. Knapik JJ, Sharp MA, Dakjy S, Jones SB, Hauret KG, Jones BH. Temporal changes in the physical fitness of US Army recruits. Sports Med. 2006;36(7):613–34.

    Article  PubMed  Google Scholar 

  40. Molloy JM, Feltwell DN, Scott SJ, Neiburh DW. Physical training injuries and interventions for military recruits. Mil Med. 2012;177(5):553–8.

    Article  PubMed  Google Scholar 

  41. Beck TJ, Ruff CB, Shaffer RA, et al. Stress fracture in military recruits: gender differences in muscle and bone susceptibility factors. Bone. 2000;27:437–44.

    Article  CAS  PubMed  Google Scholar 

  42. Bennell KL, Malcolm SA, Thomas SA, et al. Risk factors for stress fractures in track and field athletes. A twelve-month prospective study. Am J Sports Med. 1996;24:810–8.

    Article  CAS  PubMed  Google Scholar 

  43. Gefen A. Biomechanical analysis of fatigue-related foot injury mechanisms in athletes and recruits during intensive marching. Med Boil Eng Comput. 2002;40:302–10.

    Article  CAS  Google Scholar 

  44. Hoffman JR, Chapnik L, Shamis A, Givon U, Davidson B. The effect of leg strength on the incidence of lower extremity overuse injuries during military training. Mil Med. 1999;164:153–6.

    CAS  PubMed  Google Scholar 

  45. Jones BH, Knapik JJ. Physical training and exercise-related injuries. Surveillance, research and injury prevention in military populations. Sports Med. 1999;27:111–25.

    Article  CAS  PubMed  Google Scholar 

  46. Milgrom C, Simkin A, Eldad A, Nyska M, Finestone A. Using bone’s adaptation ability to lower the incidence of stress fractures. Am J Sports Med. 2000;28:245–51.

    CAS  PubMed  Google Scholar 

  47. Cootes T, Taylor C, Cooper D, Graham J. Active shape models-their training and application. Comput Vis Image Underst. 1995;61:38–59.

    Article  Google Scholar 

  48. Fluete M, Lavallee S. Building a complete surface model from sparse data using statistical shape models. Proceedings of the Medical Image Computing and Computer-Assisted Intervention-MIC-CAI’98, First International Conference. New York: Springer; 1998. (ISBN: 3-540-65136-5). pp. 879–87.

    Google Scholar 

  49. Moran DS, Israeli E, Evans RK, Yanovich R, Constantini N, Shabshin N, Merkel D, Luria O, Erlich T, Laor A, Finestone AS. Prediction model for stress fracture in young female recruits during basic training. Med Sci Sports Exerc. 2008;40:636–44.

    Article  Google Scholar 

  50. Moran DS, Finestone AS, Arbel Y, Shabshin M, Laor A. A simplified model to predict stress fracture in young elite combat recruits. J Strength Cond Res. 2012;26:2585–92.

    Article  PubMed  Google Scholar 

  51. Rajamani L, Joshi SC, Styner M. Bone model morphing for enhanced visualization. In: IEEE Symposium on Biomechanical Imaging. ISBN: 0-7803-8388-5; New York: IEEE; 2004. pp. 1255–58.

    Google Scholar 

  52. Brunet ME, Cook SD, Brinker MR, et al. A survey of running injuries in 1505 competitive and recreational runners. J Sports Med Phys Fitness. 1990;30:307–15.

    CAS  PubMed  Google Scholar 

  53. Yanovich R, Merkel D, Israeli E, Evans RK, Erlich T, Moran DS. Anemia, iron deficiency, and stress fractures in female combatants during 16 months. J Strength and Cond Res. 2011;25:3412–21.

    Article  Google Scholar 

  54. Rome K, Handoll HG, Ashford RL. Interventions for preventing and treating stress fractures and stress reactions of bone of the lower limbs in young adults. Cochrane Database of Syst Rev. 2005;2:1–49.

    Google Scholar 

  55. Milgrom C, Finestone A, Shlamkovitch N et al. Anterior knee pain caused by overactivity: a long term prospective follup. Clin Orthop Relat Res. 1996;331:256–60.

    Article  PubMed  Google Scholar 

  56. Milgrom C, Burr D, Fyhrie D, et al. A comparison of the effect of shoes on human tibial axial strains recorded during dynamic loading. Foot Ankle Int. 1998;19:85–90.

    Article  CAS  PubMed  Google Scholar 

  57. Bennell K, Brukner P. Preventing and managing stress fractures in athletes. Phys Ther Sport. 2005;6:171–80.

    Article  Google Scholar 

  58. Brukner P, Bennell K. Stress fractures in female athletes. Diagnosis, management and rehabilitation. Sports Med. 1997;24:419–29.

    Article  CAS  PubMed  Google Scholar 

  59. Devereaux MD, Parr GR, Lachmann SM, Page-Thomas P, Hazleman BL. The diagnosis of stress fractures in athletes. JAMA. 1984;252:531–3.

    Article  CAS  PubMed  Google Scholar 

  60. Frederickson M, Wun C. Differential diagnosis of leg pain in the athlete. J Am Podiatr Med Assoc. 2003;93:321–4.

    Article  Google Scholar 

  61. Frederickson M, Bergman AG, Hoffman KL, Dillingham MS. Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med. 1995;23:472–81.

    Article  Google Scholar 

  62. Matheson GO, Clement DB, McKenzie DC, et al. Scintigraphic uptake of 99mTc at non-painful sites in athletes with stress fractures. Sports Med. 1987;4:65–75.

    Article  CAS  PubMed  Google Scholar 

  63. Moss A, Mowat AG. Ultrasonic assessment of stress fractures. Br Med J (Clin Res Ed). 1983;286:1479–80.

    Article  CAS  Google Scholar 

  64. Reeder MT, Dick BH, Atkins JK, Pribis AB, Martines JM. Stress fractures. Current concepts of diagnosis and treatment. Sports Med. 1996;22:198–212.

    Article  CAS  PubMed  Google Scholar 

  65. Sterling JC, Edelstein DW, Calvo RD, Webb R 2nd. Stress fractures in the athlete. Diagnosis and management. Sports Med. 1992;14:336–46.

    Article  CAS  PubMed  Google Scholar 

  66. Strauch WB, Slomiany WP. Evaluating shin pain in active patients. J Musculokelet Med. 2008;25:138–48.

    Google Scholar 

  67. Touliopolous S, Hershman EB. Lower leg pain. Diagnosis and treatment of compartment syndromes and other pain syndromes of the leg. Sports Med. 1999;27:193–204.

    Article  CAS  PubMed  Google Scholar 

  68. Wen DY, Propeck T, Singh A. Femoral neck stress injury with negative bone scan. J Am Board Fam Med. 2003;16:170–4.

    Article  Google Scholar 

  69. Romani WA, Gieck JH, Perrin DH, Saliba EN, Kahler DM. Mechanics and management of stress fractures in physically active persons. J Athl Train. 2002;37:306–14.

    PubMed Central  PubMed  Google Scholar 

  70. Wilcox JR, Moniot AL, Green JP. Bone scanning in the evaluation of exercise related stress injuries. Radiology. 1977;123:699–703.

    Article  PubMed  Google Scholar 

  71. Edelman B. “Hot” bone scans par for the course. Orthop Today 1993;13:1–21.

    Google Scholar 

  72. Scully TJ, Griffith JC, Jones B, et al. Bone scans yield a high incidence of false positive diagnoses of stress fractures. (Abstract). Presented at the American Academy of Orthopaedic Surgeons 1993 Annual Meeting, San Francisco, California; Feb 18–23, 1993.

    Google Scholar 

  73. Ardent EA, Griffiths HJ. The use of MR imaging in the assessment and clinical management of stress reactions of bone in high-performance athletes. Clin Sports Med. 1997;16:291–306.

    Article  Google Scholar 

  74. Knapp TP, Garrett WE. Stress fractures: general concepts. Clin Sports Med. 1997;16:339–56.

    Article  CAS  PubMed  Google Scholar 

  75. McFarland EG, Giangarra C. Sacral stress fractures in athletes. Clin Orthop Relat Res. 1996;329:240–3.

    Article  PubMed  Google Scholar 

  76. Schneider AG, Sullivan SJ, Hendrick PA, Hones B, McMaster AR, Sugden BA, Tomlinson C. The ability of clinical tests to diagnose stress fractures: a systematic review and meta-analysis. J Orthop Sports Phys Ther. 2012;42:760–71.

    Article  Google Scholar 

  77. Lesho EP. Can tuning forks replace bone scans for identification of tibial stress fractures? Mil Med. 1997;162:802–3.

    CAS  PubMed  Google Scholar 

  78. Talbot JC, Cox G, Townend M, Langham M, Parker PJ. Femoral neck stress fractures in military personnel-a case series. J R Army Med Corps. 2008;154(1):47–50.

    Article  CAS  PubMed  Google Scholar 

  79. Lappe J, Cullen D, Haynakzki G, Recker R, Ahlf R, Thompson K. Calcium and vitamin D supplementation decreases incidence of stress fractures in female Navy recruits. J Bone Miner Res. 2008;23(5):741–9.

    Article  CAS  PubMed  Google Scholar 

  80. Pihlajamaki HK, Ruohola JP, Kiura MJ, Visuri TI. Displaced femoral neck fatigue fractures in military recruits. J Bone Joint Surg Am. 2006;88:1989–97.

    Article  PubMed  Google Scholar 

  81. Jones BH, Harris JM, Vinh TN, et al. Exercise-induced stress fractures and stress reactions of bone: epidemiology, etiology and classification. Exerc Sports Sci Rev. 1989;17:379–422.

    CAS  Google Scholar 

  82. Ross RA, Allsopp A. Stress fractures in Royal Marine recruits. Mil Med. 2002;167:560.

    PubMed  Google Scholar 

  83. Clough T. Case report remoral neck stress fracture: the importance of clinical suspicion and early review. Br J Sports Med. 2002;36:308–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Boden S, Labropoulos P, Saunders R. Hip fractures in young patients: is this early osteoporosis? Calcif Tissue Int. 1990;46:65–72.

    Article  CAS  PubMed  Google Scholar 

  85. Hajek BS. Stress fractures of the femoral neck in joggers. Am J Sports Med. 1982;10:112–6.

    Article  CAS  PubMed  Google Scholar 

  86. Heath J. Athletic women, amenorrhea and skeletal integrity. Ann Intern Med. 1985;102:258–259.

    Article  PubMed  Google Scholar 

  87. Muldoon MP, Padgett DE, Sweet DE et al. Femoral neck stress fractures and metabolic bone disease. J Orthop Trauma. 2001;15(3):181–5.

    Google Scholar 

  88. Perloff JJ, McDermott MT, Perloff FA, et al. Reduced bone mineral content is a risk factor for hip fractures. Orthop Rev. 1991;20:690–7.

    CAS  PubMed  Google Scholar 

  89. Ville MM, Niva M, Kiuru M, Pihlajamaki H. Risk factors for bone stress injuries: a follow-up study of 102,515 person-years. Med Sci Sports Exerc. 2007;39:1061–6.

    Article  Google Scholar 

  90. Weistroffer JK, Muldoon MP, Duncan DD, Fletcher EH, Padgett DE. Femoral neck stress fractures: outcome analysis at minimum five-year follow-up. J Orthop Trauma. 2003;17:334–7.

    Article  PubMed  Google Scholar 

  91. Pope RP, Herbert RD, Kirwan JD. Effects of flexibility and stretching on injury risk in Army recruits. Aust J Physiother. 1998;44:165–72.

    Article  PubMed  Google Scholar 

  92. Johnson AW, Weiss CB Jr, Wheeler DL. Stress fractures of the femoral shaft in athletes-more common than expected. A new clinical test. Am J Sports Med. 1994;22:248–56.

    Article  CAS  PubMed  Google Scholar 

  93. Finestone A, Milgrom C, Wolf O, Petrov K, Evans R, Moran D. Epidemiology of metatarsal stress fractures versus tibial and femoral stress fractures during elite training. Foot Ankle Int. 2011;32:16–20.

    Article  PubMed  Google Scholar 

  94. Boden BP, Speer KP. Femoral stress fractures. Clin Sports Med. 1997;16:307–17.

    Article  CAS  PubMed  Google Scholar 

  95. Milgrom C, Chisin R, Margulies J, et al. Stress fractures of the medial femoral condyle. J Trauma. 1986;26:199–200.

    Article  CAS  PubMed  Google Scholar 

  96. Gaeta M, Minutoli F, Scribano E, et al. CT and MR imaging findings in athletes with early tibial stress injuries: comparison with bone scintigraphy findings and emphasis on cortical abnormalities. Radiology. 2005;235:553–61.

    Article  PubMed  Google Scholar 

  97. Goldberg B, Pecora C. Stress fractures: a risk of increased training in freshman. Physician Sportsmed. 1994;22:68–78.

    Google Scholar 

  98. Hulkko A, Orava S. Stress fractures in athletes. Int J Sports Med. 1987;8:221–6.

    Article  CAS  PubMed  Google Scholar 

  99. Finestone A, Shlamkovitch M, Eldad A, Wosk J, Laor A, Danon YL, Milgron C. Risk factors for stress fractures among Israeli infantry recruits. Mil Med. 1991;156:528–30.

    CAS  PubMed  Google Scholar 

  100. Givon U, Friedman E, Reiner A, Vered I, Finestone A, Shemer J. Stress fractures in the Israeli defense forces from 1995 to 1996. Clin Orthop Relat Res. 2000;373:227–32.

    Article  PubMed  Google Scholar 

  101. Matheson GO, Clement DB, McKenzie DC, Taunton JE, Lloyd-Smith DR, MacIntyre JG. Stress fractures in athletes. A study of 320 cases. Am J Sports Med. 1987;15:46–58.

    Article  CAS  PubMed  Google Scholar 

  102. Batt ME, Ugalde V, Anderson MW, Shelton DK. A prospective controlled study of diagnostic imaging for acute shin splints. Med Sci Sports Exerc. 1998;30:1564–71.

    Article  CAS  PubMed  Google Scholar 

  103. Hallel T, Amit S, Segal D. Fatigue fractures of tibial and femoral shaft in soldiers. Clin Orthop Relat Res. 1976;118:35–43.

    PubMed  Google Scholar 

  104. Orava S, Hulkko A. Delayed unions and nonunions of stress fractures in athletes. Am J Sports Med. 1988;16:378–82.

    Article  CAS  PubMed  Google Scholar 

  105. Ruohola, JS, Kiuru MJ, Pihlajamaki HK. Fatigue bone injuries causing anterior lower leg pain. Clin Orthop Relat Res. 2006;44:216–23.

    Article  Google Scholar 

  106. Sullivan D, Warren RF, Pavlov H, Kelman G. Stress fractures in 51 runners. Clin Orthop Relat Res. 1984;187:188–92.

    PubMed  Google Scholar 

  107. Dutton J, Bromhead SE, Speed CA, Menzies AR, Peters AM. Clinical value of grading the scintigraphic appearances of tibial stress fractures in military recruits. Clin Nucl Med. 2002;27:18–21.

    Article  PubMed  Google Scholar 

  108. Montgomery LC, Nelson FR, Norton JP et al. Orthopedic history and examination in the etiology of overuse injuries. Med Sci Sports Exerc. 1989;21:237–43.

    Article  CAS  PubMed  Google Scholar 

  109. Finestone A, Milgrom C. How stress fracture incidence was lowered in the Israeli Army: a 25-yr struggle. Med Sci Sports Exerc. 2008;40:S623–9.

    Article  PubMed  Google Scholar 

  110. Breithaupt J. Zur pathologie des menschlichen fuses. Med Ztg Berlin. 1885;24:169–71, 175–7.

    Google Scholar 

  111. Duran-Stanton AM. March fractures on a female military recruit. Mil Med. 2011;176:53–5.

    Article  PubMed  Google Scholar 

  112. Greaney RB, Gerber FH, Laughlin RL, Kmet JP, Metz CD, Kilcheski TS, Rao BR, Silverman ED. Distribution and natural history of stress fractures in US Marine recruits. Radiology. 1983;146:339–46.

    Article  CAS  PubMed  Google Scholar 

  113. Spitz DJ, Newberg AH. Imaging of stress fractures in the athlete. Radiol Clin North Am. 2002;40:313–31.

    Article  PubMed  Google Scholar 

  114. Weber JM, Vidt LG, Gehl RS, Montgomery T. Calcaneal stress fractures. Clin Podiatr Med Surg N Am. 2005;22:45–54.

    Article  Google Scholar 

  115. Hopson CN, Perry DR. Stress fractures of the calcaneus in women Marine recruits. Clin Orthop Relat Res. 1977;128:159–62.

    PubMed  Google Scholar 

  116. Hullinger CW. Insufficiency fracture of the calcaneus similar to march fracture of the metatarsal. J Bone Joint Surge Am. 1944;26:751–7.

    Google Scholar 

  117. Giladi M, Alcalay J. Stress fracture of the calcaneus-still an enigma in the Israeli Army. JAMA. 1984;252:3128–9.

    Article  CAS  PubMed  Google Scholar 

  118. Hershman EB, Mailly T. Stress fractures. Clin Sports Med. 1990;9:183–214.

    CAS  PubMed  Google Scholar 

  119. Sormaala MJ, Niva MH, Kiuru MJ, Mattila VM, Pihlajamaki HK. Stress injuries of the calcaneus detected with magnetic resonance imaging in military recruits. J Bone Joint Surg. 2006;88:2237–42.

    Article  PubMed  Google Scholar 

  120. Rupani HD, Holder LE, Espinola DA, Engin SI. Three-phase radionuclide bone imaging in sports medicine. Radiology. 1985;156:187–96.

    Article  CAS  PubMed  Google Scholar 

  121. Umans H, Pavlov H. Insufficiency fracture of the talus. Diagnosis with MR imaging. Radiology. 1995;197:439–42.

    Article  CAS  PubMed  Google Scholar 

  122. Boling MC, Padua DA, Marshall SW, et al. A prospective investigation of biomechanical risk factors for patellofemoral pain syndrome. The joint undertaking to monitor and prevent ACL injury (JUMP-ACL) cohort. Am J Sports Med. 2009;37(11):2108–16.

    Article  PubMed Central  PubMed  Google Scholar 

  123. O’Connor FG, Marlowe SS. Low back pain in military basic trainees. Spine. 1993;18(10):1351–4.

    Article  PubMed  Google Scholar 

  124. Rodríguez-Soto AE, Jaworski R, Jensen A, et al. Effect of load carriage on lumbar spine kinematics. Spine. 2013;38(13):E783–91.

    Article  PubMed  Google Scholar 

  125. Childs JD, Teyhen DS, Benedict TM, et al. Effects of sit-up training versus core stabilization exercises on sit-up performance. Med Sci Sports Exerc. 2009;41(11):2072–83.

    Article  PubMed  Google Scholar 

  126. Cameron KL. History of shoulder instability and subsequent injury during four years of follow-up. J Bone Joint Surg Am. 2013;95(5):439–45.

    Article  PubMed  Google Scholar 

  127. Owens, BD, Dawson L, Burks R, et al. Incidence of shoulder dislocation in the United States military: demographic considerations from a high-risk population. J Bone Joint Surg Am. 2009;91(4):791–6.

    Article  PubMed  Google Scholar 

  128. Bottoni CR, Arciero RA. “Arthroscopic repair of primary anterior dislocations of the shoulder.” Tech Shoulder Elbow Surg. 2001;2(1):2–16.

    Article  Google Scholar 

  129. Owens, BD, DeBerardino TM, Nelson BJ, et al. Long-term follow-up of acute arthroscopic Bankart repair for initial anterior shoulder dislocations in young athletes. Am J Sports Med. 2009;37(4):669–73.

    Article  PubMed  Google Scholar 

  130. Scott SJ, Feltwell DN, Knapik JJ, Barkley CB, Hauret KG, Bullock SH, Evans RK. A multiple intervention strategy for reducing femoral neck stress injuries and other serious overuse injuries in U.S. Army Basic Combat Training. Mil Med. 2012;9:1081–9.

    Article  Google Scholar 

  131. TRADOC Regulation 350-6: Enlisted initial entry training policies and administration. Fort Monroe, VA: Department of the Army Headquarters, United States Army Training and Doctrine Command, 2007. http://www.tradoc.army.mil/tpubs/regs/tr350-6.pdf. Accessed 30 June 2015.

  132. Knapik JJ, Graham B, Steelman R. The effectiveness of athletic trainers & musculoskeletal action teams in reducing injuries and attrition and enhancing physical fitness in IET. US Army Institute of Public Health, Aberdeen Proving Ground, MD, Aug 21, 2012.

    Google Scholar 

  133. Gaffney-Stomberg E, Lutz LJ, Rood JC, Cable SJ, Pasiakos SM, Young AG, McClung JP. Calcium and vitamin D supplementations maintains parathyroid hormone and improves bone density during initial military training: a randomized, double-blind, placebo controlled trial. Bone. 2010;8(2):46–56.

    Google Scholar 

  134. Daoud AI, Geissler GJ, Wang F, Saretsky J, Daoud YA. Foot strike and injury rates in endurance runners: a retrospective study. Med Sci Sports Exerc. 2012;44(7):1325–34.

    Article  PubMed  Google Scholar 

  135. Milner CE, Hamill J, Davis I. Are knee mechanics during early stance related to tibial stress fracture in runners? Clin Biomech. 2007;22(6):697–703.

    Article  Google Scholar 

  136. Crowell HP, Davis IS. Gait retraining to reduce lower extremity loading in runners. Clin Biomech. 2007;26(1):78–83.

    Article  Google Scholar 

  137. Goss DL, Gross MT. A review of mechanics and injury trends among various running styles. US Army Med Dep J. 2012; Jul-Sep: 62–71.

    Google Scholar 

  138. Goss DL, Gross MT. A comparison of negative joint work and vertical ground reaction force loading rates in Chi runners and rearfoot-striking runners. J Orthop Sports Phys Ther. 2013;43(10):685–92.

    Article  PubMed  Google Scholar 

  139. Zanker CL, Swaine IL. Responses of bone turnover markers to repeated endurance running in humans under conditions of energy balance or energy restriction. Eur J Appl Physiol. 2000;83:434–40.

    Article  CAS  PubMed  Google Scholar 

  140. Costill DL, Bowers R, Branam G, Sparks K. Muscle glycogen utilization during prolonged exercise on successive days. J Appl Physiol. 1971;31:834–8.

    CAS  PubMed  Google Scholar 

  141. Rumsfeld DH. Memorandum. Office of the Secretary of Defense. Reducing preventable accidents. 19 May 2003.

    Google Scholar 

  142. FM 7-22 Army Physical Readiness Training. Washington, DC: Headquarters, Department of the Army; 2012.

    Google Scholar 

  143. Knapik JJ, Hauret KG, Arnold S, et al. Injury and fitness outcomes during implementation of physical readiness training. Int J Sports Med. 2003;24:372–38.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott D. Carow PT, DSc, OCS, SCS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carow, S., Gaddy, J. (2016). Musculoskeletal Injuries During Military Initial Entry Training. In: Cameron, K., Owens, B. (eds) Musculoskeletal Injuries in the Military. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2984-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2984-9_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2983-2

  • Online ISBN: 978-1-4939-2984-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics