Skip to main content

Functional Morphology and Symmetry in the Odontocete Ear Complex

  • Conference paper
The Effects of Noise on Aquatic Life II

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 875))

Abstract

Odontocete ear complexes or tympanoperiotic complexes (TPCs) were compared for asymmetry. Left and right TPCs were collected from one long-beaked common dolphin (Delphinus capensis) and one Amazon River dolphin (Inia geoffrensis). Asymmetry was assessed by volumetric comparisons of left and right TPCs and by visual comparison of superimposed models of the right TPC to a reflected mirror image of the left TPC. Kolmogorov–Smirnov tests were performed to compare the resonant frequencies of the TPCs as calculated by vibrational analysis. All analyses found slight differences between TPCs from the same specimen in contrast to the directional asymmetry in the nasal region of odontocete skulls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barroso C, Cranford TW, Berta A (2012) Shape analysis of odontocete mandibles: functional and evolutionary implications. J Morphol 273:1021–1030

    Article  PubMed  Google Scholar 

  • Brill RL, Moore PW, Dankiewicz LA (2001) Assessment of dolphin (Tursiops truncatus) auditory sensitivity and hearing loss using jawphones. J Acoust Soc Am 109:1717–1722

    Article  CAS  PubMed  Google Scholar 

  • Cranford TW (1988) Anatomy of acoustic structures in the spinner dolphin forehead as shown by x-ray computed tomography and computer graphics. In: Nachtigall PE, Moore PWB (eds) Animal sonar: processes and performance. Plenum Publishing Co., New York, pp 67–77

    Chapter  Google Scholar 

  • Cranford TW (1992) Directional asymmetry in odontocetes. Am Zool 32:140

    Google Scholar 

  • Cranford TW, Amundin M, Norris KS (1996) Functional morphology and homology in the odontocete nasal complex: implications for sound generation. J Morphol 228:223–285

    Article  CAS  PubMed  Google Scholar 

  • Cranford TW, Elsberry WR, Bonn WGV, Jeffress JA, Chaplin MS, Blackwood DJ, Carder DA, Kamolnick T, Todd A, Ridgway SH (2011) Observation and analysis of sonar signal generation in the bottlenose dolphin (Tursiops truncatus): Evidence for two sonar sources. J Exp Mar Biol Ecol 407:81–96

    Article  Google Scholar 

  • Cranford TW, Krysl P (2012) Acoustic function in the peripheral auditory system of Cuvier’s beaked whale (Ziphius cavirostris). In: Popper AN, Hawkins AD (eds) The effects of noise on aquatic life. Advances in experimental medicine and biology, vol 730. Springer Science + Business Media, LLC, New York

    Google Scholar 

  • Cranford TW, Krysl P, Amundin M (2010) A new acoustic portal into the odontocete ear and vibrational analysis of the tympanoperiotic complex. PLoS ONE 5:e11927

    Google Scholar 

  • Cranford TW, Krysl P, Hildebrand JA (2008a) Acoustic pathways revealed: simulated sound transmission and reception in Cuvier’s beaked whale (Ziphius cavirostris). Bioinspir Biomim 3:1–10

    Article  Google Scholar 

  • Cranford TW, McKenna MF, Soldevilla M, Wiggins SM, Goldbogen JA, Shadwick RE, Krysl P, St. Leger JA, Hildebrand JA (2008b) Anatomic geometry of sound transmission and reception in Cuvier’s beaked whale (Ziphius cavirostris). Anat Rec 291:353–378

    Google Scholar 

  • Cranford TW, Trijoulet V, Smith CR, Krysl P (2014) Validation of a vibroacoustic finite element model using bottlenose dolphin simulations: the dolphin biosonar beam is focused in stages. Bioacoustics 23:1–34. doi:10.1080/09524622.2013.843061

    Article  Google Scholar 

  • Currey JD (1979) Mechanical properties of bone tissues with greatly differing functions. J Biomech 12:313–319

    Article  CAS  PubMed  Google Scholar 

  • Fahlke JM, Gingerich PD, Welsh RC, Wood AR (2011) Cranial asymmetry in Eocene archaeocete whales and the evolution of directional hearing in water. Proc Natl Acad Sci U S A 108:14545–14548. doi:10.1073/pnas.1108927108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobs DW, Hall JD (1972) Auditory thresholds of a fresh water dolphin, Inia geofferensis Blainville. J Acoust Soc Am 51:530–533

    Article  Google Scholar 

  • Krysl P, Cranford TW, Wiggins SM, Hildebrand JA (2006) Simulating the effect of high-intensity sound on cetaceans: modeling approach and a case study for Cuvier’s beaked whale (Ziphius cavirostris). J Acoust Soc Am 120:2328–2339

    Article  CAS  PubMed  Google Scholar 

  • Krysl P, Trijoulet V, Cranford TW (2012) Validation of a vibroacoustic finite element model using bottlenose dolphin experiments. In: Popper AN, Hawkins AD (eds) The effects of noise on aquatic life. Advances in experimental medicine and biology, vol 730. Springer Science + Business Media, LLC, New York, pp 65–68

    Google Scholar 

  • Mathworks (2012) MATLAB r2012a. Mathworks, Natick

    Google Scholar 

  • McGowen MR, Spaulding M, Gatesy J (2009) Divergence date estimation and a comprehensive molecular tree of extant cetaceans. Mol Phylogenet Evol 53:891–906

    Article  CAS  PubMed  Google Scholar 

  • Møhl B, Au WW, Pawloski J, Nachtigall PE (1999) Dolphin hearing: relative sensitivity as a function of point of application of a contact sound source in the jaw and head region. J Acoust Soc Am 105:3421–3424

    Article  PubMed  Google Scholar 

  • Norris KS (1968) The evolution of acoustic mechanisms in odontocete cetaceans. In: Drake ET (ed) Evolution and environment. Yale University Press, New Haven, pp 297–324

    Google Scholar 

  • Popov VV, Klishin VO (1998) EEG study of hearing in the common dolphin, Delphinus delphis. Aquat Mamm 24:13–20

    Google Scholar 

  • R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at http://www.r-project.org

  • Robb RA (2001) The biomedical imaging resource at Mayo Clinic. IEEE Trans Med Imaging 20:854–867

    Article  CAS  PubMed  Google Scholar 

  • Wiley DF, Amenta N, Alcantara DA, Ghosh D, Kil YJ, Delson E, Harcourt-Smith W, Rohlf FJ, St John K, Hamann B (2005) Evolutionary morphing. In: Proceedings of IEEE Visualization 2005, Minneapolis, 23–28 October 2005, pp 431–438

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Winston Lancaster (Sacramento State University, Sacramento, CA) for his assistance on this project. William Ary thanks his committee members Dr. Doug Deutschman and Dr. Sam Kassegne for their assistance and advice, his lab mates Reagan Furbish, Sarah Kienle, Meghan Smallcomb, and Nick Zellmer, and his former lab mates Jessica Martin and Celia Barroso.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ted W. Cranford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this paper

Cite this paper

Ary, W., Cranford, T.W., Berta, A., Krysl, P. (2016). Functional Morphology and Symmetry in the Odontocete Ear Complex. In: Popper, A., Hawkins, A. (eds) The Effects of Noise on Aquatic Life II. Advances in Experimental Medicine and Biology, vol 875. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2981-8_7

Download citation

Publish with us

Policies and ethics