Skip to main content

Improvement of Electrical Conductivity and Transparency

  • Chapter
  • First Online:
Graphene for Transparent Conductors

Abstract

Transparent conductors (TCs) made from as-deposited reduced graphene oxide (rGO) sheets significantly underperform those made from the chemical vapor deposition (CVD)-grown graphene in terms of optoelectrical properties because of (i) the inherently inferior electrical conductivities of rGO, (ii) the remaining oxygenated functional groups, and (iii) the intersheet junctions with high contact resistance between the rGO sheets. To further improve the electrical conductivities of graphene or graphene oxide (GO)-based transparent conductive films (TCFs), several approaches have been taken, such as chemical doping, hybridization, and using large-size GO sheets. Doping is achieved either through surface transfer doping or substitutional doping. One of the most effective approaches to reduce the number of intersheet tunneling barriers is producing large-size graphene sheets. Another successful approach is to bridge these intersheet junctions with 1D highly conducting nanofillers, such as single-walled nanotubes (SWNTs), metal nanowire (NW), and nanogrids that can facilitate the restoration of the inherent electrical conductivities while sacrificing a little of the transparency of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhao, J. P., Pei, S. F., Ren, W. C., Gao, L. B., & Cheng, H. M. (2010). Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano, 4, 5245–5252.

    Article  Google Scholar 

  2. Liu, H. T., Liu, Y. Q., & Zhu, D. B. (2011). Chemical doping of graphene. Journal of Materials Chemistry, 21, 3335–3345.

    Article  Google Scholar 

  3. Becerril, H. A., Mao, J., Liu, Z., Stoltenberg, R. M., Bao, Z., & Chen, Y. (2008). Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano, 2, 463–470.

    Article  Google Scholar 

  4. Eda, G., Fanchini, G., & Chhowalla, M. (2008). Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology, 3, 270–274.

    Article  Google Scholar 

  5. Wang, X., Zhi, L. J., & Mullen, K. (2008). Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 8, 323–327.

    Article  Google Scholar 

  6. Zhu, Y. W., Cai, W. W., Piner, R. D., Velamakanni, A., & Ruoff, R. S. (2009). Transparent self-assembled films of reduced graphene oxide platelets. Applied Physics Letters, 95, 103104.

    Article  Google Scholar 

  7. Lin, X. Y., Shen, X., Zheng, Q. B., Yousefi, N., Ye, L., Mai, Y. W., & Kim, J. K. (2012). Fabrication of highly-aligned, conductive, and strong graphene papers using ultra large graphene oxide sheets. ACS Nano, 6, 10708–10719.

    Google Scholar 

  8. Huang, Z. D., Zhang, B. A., Oh, S. W., Zheng, Q. B., Lin, X. Y., Yousefi, N., & Kim, J. K. (2012). Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors. Journal of Materials Chemistry, 22, 3591–3599.

    Article  Google Scholar 

  9. Li, J., Vaisman, L., Marom, G., & Kim, J. K. (2007). Br treated graphite nanoplatelets for improved electrical conductivity of polymer composites. Carbon, 45, 744–750.

    Article  Google Scholar 

  10. Geng, H. Z., Kim, K. K., So, K. P., Lee, Y. S., Chang, Y., & Lee, Y. H. (2007). Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. Journal of the American Chemical Society, 129, 7758–7759.

    Article  Google Scholar 

  11. Dettlaff-Weglikowska, U., Skakalova, V., Graupner, R., Jhang, S. H., Kim, B. H., Lee, H. J., Ley, L., Park, Y. W., Berber, S., Tomanek, D., & Roth, S. (2005). Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks. Journal of the American Chemical Society, 127, 5125–5131.

    Article  Google Scholar 

  12. Parekh, B. B., Fanchini, G., Eda, G., & Chhowalla, M. (2007). Improved conductivity of transparent single-wall carbon nanotube thin films via stable postdeposition functionalization. Applied Physics Letters, 90, 121913.

    Article  Google Scholar 

  13. Wang, Y., Di, C. A., Liu, Y. Q., Kajiura, H., Ye, S. H., Cao, L. C., Wei, D. C., Zhang, H. L., Li, Y. M., & Noda, K. (2008). Optimizing single-walled carbon nanotube films for applications in electroluminescent devices. Advanced Materials, 20, 4442–4449.

    Article  Google Scholar 

  14. Gunes, F., Shin, H. J., Biswas, C., Han, G. H., Kim, E. S., Chae, S. J., Choi, J. Y., & Lee, Y. H. (2010). Layer-by-layer doping of few-layer graphene film. ACS Nano, 4, 4595–4600.

    Article  Google Scholar 

  15. Kasry, A., Kuroda, M. A., Martyna, G. J., Tulevski, G. S., & Bol, A. A. (2010). Chemical doping of large-area stacked graphene films for use as transparent, conducting electrodes. ACS Nano, 4, 3839–3844.

    Article  Google Scholar 

  16. Kim, K. K., Reina, A., Shi, Y. M., Park, H., Li, L. J., Lee, Y. H., & Kong, J., (2010). Enhancing the conductivity of transparent graphene films via doping. Nanotechnology, 21, 285205.

    Article  Google Scholar 

  17. Zheng, Q. B., Gudarzi, M. M., Wang, S. J., Geng, Y., Li, Z. G., & Kim, J. K. (2011). Improved electrical and optical characteristics of transparent graphene thin films produced by acid and doping treatments. Carbon, 49, 2905–2916.

    Article  Google Scholar 

  18. Eda, G., Lin, Y. Y., Miller, S., Chen, C. W., & Su, W. F., & Chhowalla, M. (2008). Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Applied Physics Letters, 92, 233305.

    Article  Google Scholar 

  19. Shin, H. J., Kim, K. K., Benayad, A., Yoon, S. M., Park, H. K., Jung, I. S., Jin, M. H., Jeong, H. K., Kim, J. M., Choi, J. Y., & Lee, Y. H. (2009). Efficient reduction of graphite oxide by sodium borohydrilde and its effect on electrical conductance. Advanced Functional Materials, 19, 1987–1992.

    Article  Google Scholar 

  20. Zheng, Q., Ip, W. H., Lin, X., Yousefi, N., Yeung, K. K., Li, Z., & Kim, J.-K. (2011). Transparent conductive films consisting of ultra large graphene sheets produced by Langmuir-Blodgett assembly. ACS Nano, 5, 6039–6051.

    Article  Google Scholar 

  21. Wang, X., Zhi, L. J., Tsao, N., Tomovic, Z., Li, J. L., & Mullen, K. (2008). Transparent carbon films as electrodes in organic solar cells. Angewandte Chemie-International Edition, 47, 2990–2992.

    Article  Google Scholar 

  22. Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183–191.

    Article  Google Scholar 

  23. Wang, C. C., Zhou, G., Wu, J., Gu, B. L., & Duan, W. H. (2006). Effects of vacancy-carboxyl pair functionalization on electronic properties of carbon nanotubes. Applied Physics Letters, 89, 173130.

    Article  Google Scholar 

  24. Tantang, H., Ong, J. Y., Loh, C. L., Dong, X. C., Chen, P., Chen, Y., Hu, X., Tan, L. P., & Li, L. J. (2009). Using oxidation to increase the electrical conductivity of carbon nanotube electrodes. Carbon, 47, 1867–1870.

    Article  Google Scholar 

  25. Adams, L., Oki, A., Grady, T., McWhinney, H., & Luo, Z. P. (2009). Preparation and characterization of sulfonic acid-functionalized single-walled carbon nanotubes. Physica E-Low-Dimensional Systems & Nanostructures, 41, 723–728.

    Article  Google Scholar 

  26. Cavalleri, O., Gonella, G., Terreni, S., Vignolo, M., Pelori, P., Floreano, L., Morgante, A., Canepa, M., & Rolandi, R. (2004). High resolution XPS of the S 2p core level region of the L-cysteine/gold interface. Journal of Physics-Condensed Matter, 16, S2477–S2482.

    Article  Google Scholar 

  27. Fedoseeva, Y. V., Bulusheva, L. G., Okotrub, A. V., Asanov, I. P., Troyanov, S. I., & Vyalikh, D. V. (2011). Electronic structure of the chlorinated fullerene C60Cl30 studied by quantum chemical modeling of X-Ray absorption spectra. International Journal of Quantum Chemistry, 111, 2688–2695.

    Article  Google Scholar 

  28. Kim, K. K., Bae, J. J., Park, H. K., Kim, S. M., Geng, H. Z., Park, K. A., Shin, H. J., Yoon, S. M., Benayad, A., Choi, J. Y., & Lee, Y. H. (2008). Fermi level engineering of single-walled carbon nanotubes by AuCl3 doping. Journal of the American Chemical Society, 130, 12757–12761.

    Article  Google Scholar 

  29. Jackson, R., Domercq, B., Jain, R., Kippelen, B., & Graham, S. (2008). Stability of doped transparent carbon nanotube electrodes. Advanced Functional Materials, 18, 2548–2554.

    Article  Google Scholar 

  30. Zheng, Q., Zhang, B., Lin, X., Shen, X., Yousefi, N., Huang, Z.-D., Li, Z., & Kim, J.-K. (2012). Highly transparent and conducting ultralarge graphene oxide/single-walled carbon nanotube hybrid films produced by Langmuir-Blodgett assembly. Journal of Materials Chemistry, 22, 25072–25082.

    Article  Google Scholar 

  31. Zhang, B., Zheng, Q. B., Huang, Z. D., Oh, S. W., & Kim, J. K. (2011). SnO(2)-graphene-carbon nanotube mixture for anode material with improved rate capacities. Carbon, 49, 4524–4534.

    Article  Google Scholar 

  32. Kim, S. H., Song, W., Jung, M. W., Kang, M. A., Kim, K., Chang, S. J., Lee, S. S., Lim, J., Hwang, J., Myung, S., & An, K. S. (2014). Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors. Advanced Materials, 26, 4247–4252.

    Article  Google Scholar 

  33. Tung, V. C., Chen, L. M., Allen, M. J., Wassei, J. K., Nelson, K., Kaner, R. B., & Yang, Y. (2009). Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Letters, 9, 1949–1955.

    Article  Google Scholar 

  34. Huang, J. H., Fang, J. H., Liu, C. C., & Chu, C. W. (2011). Effective work function modulation of graphene/carbon nanotube composite films as transparent cathodes for organic optoelectronics. ACS Nano, 5, 6262–6271.

    Article  Google Scholar 

  35. Chen, F. M., Liu, S. B., Shen, J. M., Wei, L., Liu, A. D., Chan-Park, M. B., & Chen, Y. (2011). Ethanol-assisted graphene oxide-based thin film formation at pentane-water interface. Langmuir, 27, 9174–9181.

    Article  Google Scholar 

  36. Yu, D. S., & Dai, L. M. (2010). Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. Journal of Physical Chemistry Letters, 1, 467–470.

    Article  Google Scholar 

  37. Kim, Y. K., & Min, D. H. (2009). Durable large-area thin films of graphene/carbon nanotube double layers as a transparent electrode. Langmuir, 25, 11302–11306.

    Article  Google Scholar 

  38. Hong, T. K., Lee, D. W., Choi, H. J., Shin, H. S., & Kim, B. S. (2010). Transparent, flexible conducting hybrid multi layer thin films of multiwalled carbon nanotubes with graphene nanosheets. ACS Nano, 4, 3861–3868.

    Article  Google Scholar 

  39. Azevedo, J., Costa-Coquelard, C., Jegou, P., Yu, T., & Benattar, J. J. (2011). Highly ordered monolayer, multilayer, and hybrid films of graphene oxide obtained by the bubble deposition method. Journal of Physical Chemistry C, 115, 14678–14681.

    Article  Google Scholar 

  40. Zheng, Q., Li, Z., Yang, J., & Kim, J.-K. (2014). Graphene oxide based transparent conductive films. Progress in Materials Science, 64, 200–247.

    Article  Google Scholar 

  41. Li, C. Y., Li, Z., Zhu, H. W., Wang, K. L., Wei, J. Q., Li, X. A., Sun, P. Z., Zhang, H., & Wu, D. H. (2010). Graphene Nano-“patches” on a carbon nanotube network for highly transparent/conductive thin film applications. Journal of Physical Chemistry C, 114, 14008–14012.

    Article  Google Scholar 

  42. King, P. J., Khan, U., Lotya, M., De, S., & Coleman, J. N. (2010). Improvement of transparent conducting nanotube films by addition of small quantities of graphene. ACS Nano, 4, 4238–4246.

    Article  Google Scholar 

  43. Cote, L. J., Kim, F., & Huang, J. X. (2009). Langmuir-Blodgett assembly of graphite oxide single layers. Journal of the American Chemical Society, 131, 1043–1049.

    Article  Google Scholar 

  44. Kim, F., Cote, L. J., & Huang, J. X. (2010). Graphene oxide: Durface activity and two-dimensional assembly. Advanced Materials, 22, 1954–1958.

    Article  Google Scholar 

  45. Li, X. L., Zhang, L., Wang, X. R., Shimoyama, I., Sun, X. M., Seo, W. S., & Dai, H. J. (2007). Langmuir-Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. Journal of the American Chemical Society, 129, 4890–4891.

    Article  Google Scholar 

  46. Giancane, G., Ruland, A., Sgobba, V., Manno, D., Serra, A., Farinola, G. M., Omar, O. H., Guldi, D. M., & Valli, L. (2010). Aligning single-walled carbon nanotubes by means of Langmuir-Blodgett film deposition: optical, morphological, and photo-electrochemical studies. Advanced Functional Materials, 20, 2481–2488.

    Article  Google Scholar 

  47. Coleman, J. N. (2009). Liquid-phase exfoliation of nanotubes and graphene. Advanced Functional Materials, 19, 3680–3695.

    Article  Google Scholar 

  48. Furtado, C. A., Kim, U. J., Gutierrez, H. R., Pan, L., Dickey, E. C., & Eklund, P. C. (2004). Debundling and dissolution of single-walled carbon nanotubes in amide solvents. Journal of the American Chemical Society, 126, 6095–6105.

    Article  Google Scholar 

  49. Giordani, S., Bergin, S. D., Nicolosi, V., Lebedkin, S., Kappes, M. M., Blau, W. J., & Coleman, J. N. (2006). Debundling of single-walled nanotubes by dilution: Observation of large populations of individual nanotubes in amide solvent dispersions. Journal of Physical Chemistry B, 110, 15708–15718.

    Article  Google Scholar 

  50. Coe-Sullivan, S., Steckel, J. S., Woo, W. K., Bawendi, M. G., & Bulovic, V. (2005). Large-area ordered quantum-dot monolayers via phase separation during spin-casting. Advanced Functional Materials, 15, 1117–1124.

    Article  Google Scholar 

  51. Cote, L. J., Kim, J., Tung, V. C., Luo, J. Y., Kim, F., & Huang, J. X. (2011). Graphene oxide as surfactant sheets. Pure and Applied Chemistry, 83, 95–110.

    Google Scholar 

  52. Kholmanov, I. N., Domingues, S. H., Chou, H., Wang, X. H., Tan, C., Kim, J. Y., Li, H. F., Piner, R., Zarbin, A. J. G., & Ruoff, R. S. (2013). Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes. ACS Nano, 7, 1811–1816.

    Google Scholar 

  53. Lyons, P. E., De, S., Elias, J., Schamel, M., Philippe, L., Bellew, A. T., Boand, J. J., & Coleman, J. N. (2011). High-performance transparent conductors from networks of gold nanowires. Journal of Physical Chemistry Letters, 2, 3058–3062.

    Article  Google Scholar 

  54. Azulai, D., Belenkova, T., Gilon, H., Barkay, Z., & Markovich, G. (2009). Transparent metal nanowire thin films prepared in mesostructured templates. Nano Letters, 9, 4246–4249.

    Article  Google Scholar 

  55. Leem, D. S., Edwards, A., Faist, M., Nelson, J., Bradley, D. D. C., & de Mello, J. C. (2011). Efficient organic solar cells with solution-processed silver nanowire electrodes. Advanced Materials, 23, 4371–4375.

    Article  Google Scholar 

  56. Lee, J. Y., Connor, S. T., Cui, Y., & Peumans, P. (2008). Solution-processed metal nanowire mesh transparent electrodes. Nano Letters, 8, 689–692.

    Article  Google Scholar 

  57. Wu, H., Hu, L. B., Rowell, M. W., Kong, D. S., Cha, J. J., McDonough, J. R., Zhu, J., Yang, Y. A., McGehee, M. D., & Cui, Y. (2010). Electrospun metal nanofiber Webs as high-performance transparent electrode. Nano Letters, 10, 4242–4248.

    Article  Google Scholar 

  58. Rathmell, A. R., & Wiley, B. J. (2011). The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Advanced Materials, 23, 4798–4803.

    Article  Google Scholar 

  59. Zhang, D. Q., Wang, R. R., Wen, M. C., Weng, D., Cui, X., Sun, J., Li, H. X., & Lu, Y. F. (2012). Synthesis of ultralong copper nanowires for high-performance transparent electrodes. Journal of the American Chemical Society, 134, 14283–14286.

    Article  Google Scholar 

  60. Choi, D., Choi, M. Y., Choi, W. M., Shin, H. J., Park, H. K., Seo, J. S., Park, J., Yoon, S. M., Chae, S. J., Lee, Y. H., Kim, S. W., Choi, J. Y., Lee, S. Y., & Kim, J. M. (2010). Fully rollable transparent nanogenerators based on graphene electrodes. Advanced Materials, 22, 2187–2192.

    Article  Google Scholar 

  61. Hwang, J. O., Lee, D. H., Kim, J. Y., Han, T. H., Kim, B. H., Park, M., No, K., & Kim, S. O. (2011). Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission. Journal of Materials Chemistry, 21, 3432–3437.

    Article  Google Scholar 

  62. Xu, S. C., Man, B. Y., Jiang, S. Z., Liu, M., Yang, C., Chen, C. S., & Zhang, C. (2014). Graphene-silver nanowire hybrid films as electrodes for transparent and flexible loudspeakers. Crystengcomm, 16, 3532–3539.

    Article  Google Scholar 

  63. Kholmanov, I. N., Magnuson, C. W., Aliev, A. E., Li, H., Zhang, B., Suk, J. W., Zhang, L. L., Peng, E., Mousavi, S. H., Khanikaev, A. B., Piner, R., Shvets, G., & Ruoff, R. S. (2012). Improved electrical conductivity of graphene films integrated with metal nanowires. Nano Letters, 12, 5679–5683.

    Article  Google Scholar 

  64. Chen, J. H., Jang, C., Xiao, S. D., Ishigami, M., & Fuhrer, M. S. (2008). Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnology, 3, 206–209.

    Article  Google Scholar 

  65. Kholmanov, I. N., Stoller, M. D., Edgeworth, J., Lee, W. H., Li, H. F., Lee, J. H., Barnhart, C., Potts, J. R., Piner, R., Akinwande, D., Barrick, J. E., & Ruoff, R. S. (2012). Nanostructured hybrid transparent conductive films with antibacterial properties. ACS Nano, 6, 5157–5163.

    Article  Google Scholar 

  66. Tien, H. W., Hsiao, S. T., Liao, W. H., Yu, Y. H., Lin, F. C., Wang, Y. S., Li, S. M., & Ma, C. C. M. (2013). Using self-assembly to prepare a graphene-silver nanowire hybrid film that is transparent and electrically conductive. Carbon, 58, 198–207.

    Article  Google Scholar 

  67. Liang, J. J., Li, L., Tong, K., Ren, Z., Hu, W., Niu, X. F., Chen, Y. S., & Pei, Q. B. (2014). Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano, 8, 1590–1600.

    Article  Google Scholar 

  68. Chen, R. Y., Das, S. R., Jeong, C., Khan, M. R., Janes, D. B., & Alam, M. A. (2013). Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes. Advanced Functional Materials, 23, 5150–5158.

    Article  Google Scholar 

  69. Liu, Y., Chang, Q. H., & Huang, L. (2013). Transparent flexible conducting graphene hybrid films with a subpercolating network of silver nanowires. Journal of Materials Chemistry C, 1, 2970–2974.

    Article  Google Scholar 

  70. Lee, D., Lee, H., Ahn, Y., Jeong, Y., Lee, D. Y., & Lee, Y. (2013). Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices. Nanoscale, 5, 7750–7755.

    Article  Google Scholar 

  71. Lee, M. S., Lee, K., Kim, S. Y., Lee, H., Park, J., Choi, K. H., Kim, H. K., Kim, D. G., Lee, D. Y., Nam, S., & Park, J. U. (2013). High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Letters, 13, 2814–2821.

    Article  Google Scholar 

  72. Liu, B. T., & Kuo, H. L. (2013). Graphene/silver nanowire sandwich structures for transparent conductive films. Carbon, 63, 390–396.

    Article  Google Scholar 

  73. Moon, I. K., Kim, J. I., Lee, H., Hur, K., Kim, W. C., & Lee, H. (2013). 2D graphene oxide nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes. Scientific Reports, 3, 1112.

    Article  Google Scholar 

  74. Zhang, X., Yan, X. B., Chen, J. T., & Zhao, J. P. (2014). Large-size graphene microsheets as a protective layer for transparent conductive silver nanowire film heaters. Carbon, 69, 437–443.

    Article  Google Scholar 

  75. Shi, L., Yang, J., Yang, T., Qiu, H., Li, J., & Zheng, Q. (2014). Molecular level controlled fabrication of highly transparent conductive reduced graphene oxide/silver nanowire hybrid films. RSC Advances, 4, 43270–43277.

    Article  Google Scholar 

  76. Suk, J. W., Kitt, A., Magnuson, C. W., Hao, Y. F., Ahmed, S., An, J. H., Swan, A. K., Goldberg, B. B., & Ruoff, R. S. (2011). Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano, 5, 6916–6924.

    Article  Google Scholar 

  77. Zhu, Y., Sun, Z. Z., Yan, Z., Jin, Z., & Tour, J. M. (2011). Rational design of hybrid graphene films for high-performance transparent electrodes. ACS Nano, 5, 6472–6479.

    Article  Google Scholar 

  78. Meyer, J. C., Geim, A. K., Katsnelson, M. I., Novoselov, K. S., Booth, T. J., & Roth, S. (2007). The structure of suspended graphene sheets. Nature, 446, 60–63.

    Article  Google Scholar 

  79. Chen, S. S., Wu, Q. Z., Mishra, C., Kang, J. Y., Zhang, H. J., Cho, K. J., Cai, W. W., Balandin, A. A., & Ruoff, R. S. (2012). Thermal conductivity of isotopically modified graphene. Nature Materials, 11, 203–207.

    Article  Google Scholar 

  80. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J. H., Kim, P., Choi, J. Y., & Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706–710.

    Article  Google Scholar 

  81. Reina, A., Jia, X. T., Ho, J., Nezich, D., Son, H. B., Bulovic, V., Dresselhaus, M. S., & Kong, J. (2009). Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 9, 30–35.

    Article  Google Scholar 

  82. Bae, S., Kim, H., Lee, Y., Xu, X. F., Park, J. S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R., Song, Y. I., Kim, Y. J., Kim, K. S., Ozyilmaz, B., Ahn, J. H., Hong, B. H., & Iijima, S. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 5, 574–578.

    Article  Google Scholar 

  83. Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39, 228–240.

    Article  Google Scholar 

  84. Bae, S. Y., Jeon, I. Y., Yang, J., Park, N., Shin, H. S., Park, S., Ruoff, R. S., Dai, L. M., & Baek, J. B. (2011). Large-area graphene films by simple solution casting of edge-selectively functionalized graphite. ACS Nano, 5, 4974–4980.

    Article  Google Scholar 

  85. Su, C. Y., Xu, Y. P., Zhang, W. J., Zhao, J. W., Tang, X. H., Tsai, C. H., & Li, L. J. (2009). Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chemistry of Materials, 21, 5674–5680.

    Article  Google Scholar 

  86. Lin, X. Y., Jia, J. J., Yousefi, N., Shen, X., & Kim, J. K. (2013). Excellent optoelectrical properties of graphene oxide thin films deposited on a flexible substrate by Langmuir-Blodgett assembly. Journal of Materials Chemistry C, 1, 6869–6877.

    Article  Google Scholar 

  87. Gao, Y., Chen, X. Q., Xu, H., Zou, Y. L., Gu, R. P., Xu, M. S., Jen, A. K. Y., & Chen, H. Z. (2010). Highly-efficient fabrication of nanoscrolls from functionalized graphene oxide by Langmuir-Blodgett method. Carbon, 48, 4475–4482.

    Article  Google Scholar 

  88. Cote, L. J., Kim, J., Zhang, Z., Sun, C., & Huang, J. X. (2010). Tunable assembly of graphene oxide surfactant sheets: wrinkles, overlaps and impacts on thin film properties. Soft Matter, 6, 6096–6101.

    Article  Google Scholar 

  89. Gilje, S., Han, S., Wang, M., Wang, K. L., & Kaner, R. B. (2007). A chemical route to graphene for device applications. Nano Letters, 7, 3394–3398.

    Article  Google Scholar 

  90. Kim, J., Kim, F., & Huang, J. X. (2010). Seeing graphene-based sheets. Materials Today, 13, 28–38.

    Article  Google Scholar 

  91. Kim, J., Cote, L. J., Kim, F., & Huang, J. X. (2010). Visualizing graphene based sheets by fluorescence quenching microscopy. Journal of the American Chemical Society, 132, 260–267.

    Article  Google Scholar 

  92. Zhou, X. Z., Lu, G., Qi, X. Y., Wu, S. X., Li, H., Boey, F., & Zhang, H. (2009). A method for fabrication of graphene oxide nanoribbons from graphene oxide wrinkles. Journal of Physical Chemistry C, 113, 19119–19122.

    Article  Google Scholar 

  93. Braga, S. F., Coluci, V. R., Legoas, S. B., Giro, R., Galvao, D. S., & Baughman, R. H. (2004). Structure and dynamics of carbon nanoscrolls. Nano Letters, 4, 881–884.

    Article  Google Scholar 

  94. Cao, L., Chen, H. Z., Li, H. Y., Zhou, H. B., Sun, J. Z., Zhang, X. B., & Wang, M. (2003). Fabrication of rare-earth biphthalocyanine encapsulated by carbon nanotubes using a capillary filling method. Chemistry of Materials, 15, 3247–3249.

    Article  Google Scholar 

  95. Gao, X. P., Zhang, Y., Chen, X., Pan, G. L., Yan, J., Wu, F., Yuan, H. T., & Song, D. Y. (2004). Carbon nanotubes filled with metallic nanowires. Carbon, 42, 47–52.

    Article  Google Scholar 

  96. Aboutalebi, S. H., Gudarzi, M. M., Zheng, Q. B., & Kim, J.-K. (2011). Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions. Advanced Functional Materials, 21, 2978–2988.

    Article  Google Scholar 

  97. Wang, S. J., Geng, Y., Zheng, Q., & Kim, J.-K. (2010). Fabrication of highly conducting and transparent graphene films. Carbon, 48, 1815–1823.

    Article  Google Scholar 

  98. Jung, I., Vaupel, M., Pelton, M., Piner, R., Dikin, D. A., Stankovich, S., An, J., & Ruoff, R. S. (2008). Characterization of thermally reduced graphene oxide by imaging ellipsometry. Journal of Physical Chemistry C, 112, 8499–8506.

    Article  Google Scholar 

  99. Li, X. L., Zhang, G. Y., Bai, X. D., Sun, X. M., Wang, X. R., Wang, E., & Dai, H. J. (2008). Highly conducting graphene sheets and Langmuir-Blodgett films. Nature Nanotechnology, 3, 538–542.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingbin Zheng .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zheng, Q., Kim, JK. (2015). Improvement of Electrical Conductivity and Transparency. In: Graphene for Transparent Conductors., vol 23. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2769-2_4

Download citation

Publish with us

Policies and ethics