Skip to main content

Fabrication of Graphene-Based Transparent Conducting Thin Films

  • Chapter
  • First Online:
Graphene for Transparent Conductors

Abstract

Chemical vapor deposition (CVD)-grown graphene and graphene oxide (GO) have been the main starting materials to produce graphene-based transparent conductors (TCs). For the CVD-grown graphene, the underlying substrates need to be removed so that the graphene sheets can be transferred onto the device substrates. Several strategies have been developed to transfer graphene sheets, and they include the etching and stamping method, thermal release method, photoresist method, roll-to-roll transfer method, and general method. Another low-cost route to produce graphene-based TCs on a large scale is to synthesize GO thin films and then reduce them. The ease of solution process of GO sheets due to their high solubility in aqueous solutions has made it a more viable and favorable approach. Once a GO dispersion is produced, GO films can be formed on a substrate using different deposition techniques, including electrophoretic deposition (EPD), spin coating, spray coating, dip coating, transfer printing, Langmuir–Blodgett (L–B) assembly, rod coating, and inkjet coating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng, Q., Li, Z., Yang, J., & Kim, J.-K. (2014). Graphene oxide based transparent conductive films. Progress in Materials Science, 64, 200–247.

    Article  Google Scholar 

  2. Wassei, J. K., & Kaner, R. B. (2010). Graphene, a promising transparent conductor. Materials Today, 13, 52–59.

    Article  Google Scholar 

  3. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J. H., Kim, P., Choi, J. Y., & Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706–710.

    Article  Google Scholar 

  4. Kang, S. J., Kim, B., Kim, K. S., Zhao, Y., Chen, Z. Y., Lee, G. H., Hone, J., Kim, P., & Nuckolls, C. (2011). Inking elastomeric stamps with micro-patterned, single layer graphene to create high-performance OFETs. Advanced Materials, 23, 3531–3535.

    Article  Google Scholar 

  5. Song, L., Ci, L. J., Gao, W., & Ajayan, P. M. (2009). Transfer printing of graphene using gold film. ACS Nano, 3, 1353–1356.

    Article  Google Scholar 

  6. Levendorf, M. P., Ruiz-Vargas, C. S., Garg, S., & Park, J. (2009). Transfer-free batch fabrication of single layer graphene transistors. Nano Letters, 9, 4479–4483.

    Article  Google Scholar 

  7. Bae, S., Kim, H., Lee, Y., Xu, X. F., Park, J. S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R., Song, Y. I., Kim, Y. J., Kim, K. S., Ozyilmaz, B., Ahn, J. H., Hong, B. H., & Iijima, S. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 5, 574–578.

    Article  Google Scholar 

  8. Song, J., Kam, F. Y., Png, R. Q., Seah, W. L., Zhuo, J. M., Lim, G. K., Ho, P. K. H., & Chua, L. L. (2013). A general method for transferring graphene onto soft surfaces. Nature Nanotechnology, 8, 356–362.

    Article  Google Scholar 

  9. Lee, Y., Bae, S., Jang, H., Jang, S., Zhu, S. E., Sim, S. H., Song, Y. I., Hong, B. H., & Ahn, J. H. (2010). Wafer-scale synthesis and transfer of graphene films. Nano Letters, 10, 490–493.

    Article  Google Scholar 

  10. Li, X. S., Zhu, Y. W., Cai, W. W., Borysiak, M., Han, B. Y., Chen, D., Piner, R. D., Colombo, L., & Ruoff, R. S. (2009). Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Letters, 9, 4359–4363.

    Article  Google Scholar 

  11. Cai, W. W., Zhu, Y. W., Li, X. S., Piner, R. D., & Ruoff, R. S. (2009). Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Applied Physics Letters, 95, 123115.

    Article  Google Scholar 

  12. Chen, X. D., Liu, Z. B., Zheng, C. Y., Xing, F., Yan, X. Q., Chen, Y. S., & Tian, J. G. (2013). High-quality and efficient transfer of large-area graphene films onto different substrates. Carbon, 56, 271–278.

    Article  Google Scholar 

  13. Lee, Y. H., & Lee, J. H. (2010). Scalable growth of free-standing graphene wafers with copper (Cu) catalyst on SiO2/Si substrate: Thermal conductivity of the wafers. Applied Physics Letters, 96, 083101.

    Article  Google Scholar 

  14. Reina, A., Jia, X. T., Ho, J., Nezich, D., Son, H. B., Bulovic, V., Dresselhaus, M. S., & Kong, J. (2009). Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 9, 30–35.

    Article  Google Scholar 

  15. Kim, H., Yoon, B., Sung, J., Choi, D. G., & Park, C. (2008). Micropatterning of thin P3HT films via plasma enhanced polymer transfer printing. Journal of Materials Chemistry, 18, 3489–3495.

    Article  Google Scholar 

  16. Wang, C., Ryu, K. M., Badmaev, A., Patil, N., Lin, A., Mitra, S., Wong, H. S. P., & Zhou, C. (2008). Device study, chemical doping, and logic circuits based on transferred aligned single-walled carbon nanotubes. Applied Physics Letters, 93, 033101.

    Article  Google Scholar 

  17. Ryu, K., Badmaev, A., Wang, C., Lin, A., Patil, N., Gomez, L., Kumar, A., Mitra, S., Wong, H. S. P., & Zhou, C. W. (2009). CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes. Nano Letters, 9, 189–197.

    Article  Google Scholar 

  18. Mattevi, C., Kim, H., & Chhowalla, M. (2011). A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry, 21, 3324–3334.

    Article  Google Scholar 

  19. Ahn, S. H., & Guo, L. J. (2008). High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Advanced Materials, 20, 2044–2049.

    Article  Google Scholar 

  20. Zhang, Y., Zhang, L. Y., & Zhou, C. W. (2013). Review of chemical vapor deposition of graphene and related applications. Accounts of Chemical Research, 46, 2329–2339.

    Article  Google Scholar 

  21. Eda, G., & Chhowalla, M. (2010). Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics. Advanced Materials, 22, 2392–2415.

    Article  Google Scholar 

  22. Eda, G., Fanchini, G., & Chhowalla, M. (2008). Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology, 3, 270–274.

    Article  Google Scholar 

  23. An, S. J., Zhu, Y. W., Lee, S. H., Stoller, M. D., Emilsson, T., Park, S., Velamakanni, A., An, J. H., & Ruoff, R. S. (2010). Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition. Journal of Physical Chemistry Letters, 1, 1259–1263.

    Article  Google Scholar 

  24. Kim, J., Kim, F., & Huang, J. X. (2010). Seeing graphene-based sheets. Materials Today, 13, 28–38.

    Article  Google Scholar 

  25. Becerril, H. A., Mao, J., Liu, Z., Stoltenberg, R. M., Bao, Z., & Chen, Y. (2008). Evaluation of solution-processed reduced graphene oxide films as transparent conductors. Acs Nano, 2, 463–470.

    Article  Google Scholar 

  26. Pham, V. H., Cuong, T. V., Hur, S. H., Shin, E. W., Kim, J. S., Chung, J. S., & Kim, E. J. (2010). Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon, 48, 1945–1951.

    Article  Google Scholar 

  27. Lee, D. W., Hong, T. K., Kang, D., Lee, J., Heo, M., Kim, J. Y., Kim, B. S., & Shin, H. S. (2011). Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides. Journal of Materials Chemistry, 21, 3438–3442.

    Article  Google Scholar 

  28. Dong, X. C., Su, C. Y., Zhang, W. J., Zhao, J. W., Ling, Q. D., Huang, W., Chen, P., & Li, L. J. (2010). Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties. Physical Chemistry Chemical Physics, 12, 2164–2169.

    Article  Google Scholar 

  29. Wang, X., Zhi, L., & Muellen, K. (2008). Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 8, 323–327.

    Article  Google Scholar 

  30. Zheng, Q. B., Gudarzi, M. M., Wang, S. J., Geng, Y., Li, Z. G., & Kim, J. K. (2011). Improved electrical and optical characteristics of transparent graphene thin films produced by acid and doping treatments. Carbon, 49, 2905–2916.

    Article  Google Scholar 

  31. Yamaguchi, H., Eda, G., Mattevi, C., Kim, H., & Chhowalla, M. (2010). Highly uniform 300 mm wafer-scale deposition of single and multilayered chemically derived graphene thin films. Acs Nano, 4, 524–528.

    Article  Google Scholar 

  32. Zheng, Q., Ip, W. H., Lin, X., Yousefi, N., Yeung, K. K., Li, Z., & Kim, J.-K. (2011). Transparent conductive films consisting of ultra large graphene sheets produced by Langmuir-Blodgett assembly. Acs Nano, 5, 6039–6051.

    Article  Google Scholar 

  33. Zheng, Q., Zhang, B., Lin, X., Shen, X., Yousefi, N., Huang, Z.-D., Li, Z., & Kim, J.-K. (2012). Highly transparent and conducting ultralarge graphene oxide/single-walled carbon nanotube hybrid films produced by Langmuir-Blodgett assembly. Journal of Materials Chemistry, 22, 25072–25082.

    Article  Google Scholar 

  34. Cote, L. J., Kim, F., & Huang, J. X. (2009). Langmuir-Blodgett assembly of graphite oxide single layers. Journal of the American Chemical Society, 131, 1043–1049.

    Article  Google Scholar 

  35. Kim, F., Cote, L. J., & Huang, J. X. (2010). Graphene oxide: Durface activity and two-dimensional assembly. Advanced Materials, 22, 1954–1958.

    Article  Google Scholar 

  36. Wang, J., Liang, M. H., Fang, Y., Qiu, T. F., Zhang, J., & Zhi, L. J. (2012). Rod-coating: Towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Advanced Materials, 24, 2874–2878.

    Article  Google Scholar 

  37. Bonaccorso, F., Lombardo, A., Hasan, T., Sun, Z. P., Colombo, L., & Ferrari, A. C. (2012). Production and processing of graphene and 2d crystals. Materials Today, 15, 564–589.

    Article  Google Scholar 

  38. Torrisi, F., Hasan, T., Wu, W. P., Sun, Z. P., Lombardo, A., Kulmala, T. S., Hsieh, G. W., Jung, S. J., Bonaccorso, F., Paul, P. J., Chu, D. P., & Ferrari, A. C. (2012). Inkjet-printed graphene electronics. Acs Nano, 6, 2992–3006.

    Article  Google Scholar 

  39. Chavez-Valdez, A., Shaffer, M. S. P., & Boccaccini, A. R. (2013). Applications of graphene electrophoretic deposition. A review. Journal of Physical Chemistry B, 117, 1502–1515.

    Article  Google Scholar 

  40. Besra, L., & Liu, M. (2007). A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in Materials Science, 52, 1–61.

    Article  Google Scholar 

  41. Boccaccini, A. R., Keim, S., Ma, R., Li, Y., & Zhitomirsky, I. (2010). Electrophoretic deposition of biomaterials. Journal of The Royal Society Interface, 7, S581–S613.

    Article  Google Scholar 

  42. Lee, V., Whittaker, L., Jaye, C., Baroudi, K. M., Fischer, D. A., & Banerjee, S. (2009). Large-area chemically modified graphene films: electrophoretic deposition and characterization by soft X-ray absorption spectroscopy. Chemistry of Materials, 21, 3905–3916.

    Article  Google Scholar 

  43. Chen, Y., Zhang, X., Yu, P., & Ma, Y. W. (2009). Stable dispersions of graphene and highly conducting graphene films: A new approach to creating colloids of graphene monolayers. Chemical Communications, 30, 4527–4529.

    Article  Google Scholar 

  44. Ishikawa, R., Ko, P. J., Kurokawa, Y., Konagai, M., & Sandhu, A. (2012). Electrophoretic deposition of high quality transparent conductive graphene films on insulating glass substrates. Asia-Pacific Interdisciplinary Research Conference 2011 (Ap-Irc 2011), 352.

    Google Scholar 

  45. Park, S., An, J. H., Piner, R. D., Jung, I., Yang, D. X., Velamakanni, A., Nguyen, S. T., & Ruoff, R. S. (2008). Aqueous suspension and characterization of chemically modified graphene sheets. Chemistry of Materials, 20, 6592–6594.

    Article  Google Scholar 

  46. Wu, J. B., Becerril, H. A., Bao, Z. N., Liu, Z. F., Chen, Y. S., & Peumans, P. (2008). Organic solar cells with solution-processed graphene transparent electrodes. Applied Physics Letters, 92, 263302.

    Article  Google Scholar 

  47. Robinson, J. T., Zalalutdinov, M., Baldwin, J. W., Snow, E. S., Wei, Z. Q., Sheehan, P., & Houston, B. H. (2008). Wafer-scale reduced graphene oxide films for nanomechanical devices. Nano Letters, 8, 3441–3445.

    Article  Google Scholar 

  48. Min, K., Han, T. H., Kim, J., Jung, J., Jung, C., Hong, S. M., & Koo, C. M. (2012). A facile route to fabricate stable reduced graphene oxide dispersions in various media and their transparent conductive thin films. Journal of Colloid and Interface Science, 383, 36–42.

    Article  Google Scholar 

  49. Li, D., Muller, M. B., Gilje, S., Kaner, R. B., & Wallace, G. G. (2008). Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 3, 101–105.

    Article  Google Scholar 

  50. Wang, X., Zhi, L. J., & Mullen, K. (2008). Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 8, 323–327.

    Article  Google Scholar 

  51. Su, C. Y., Xu, Y. P., Zhang, W. J., Zhao, J. W., Tang, X. H., Tsai, C. H., & Li, L. J. (2009). Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chemistry of Materials, 21, 5674–5680.

    Article  Google Scholar 

  52. Allen, M. J., Tung, V. C., Gomez, L., Xu, Z., Chen, L. M., Nelson, K. S., Zhou, C. W., Kaner, R. B., & Yang, Y. (2009). Soft transfer printing of chemically converted graphene. Advanced Materials, 21, 2098–2102.

    Article  Google Scholar 

  53. Wang, S. J., Geng, Y., Zheng, Q. B., & Kim, J. K. (2010). Fabrication of highly conducting and transparent graphene films. Carbon, 48, 1815–1823.

    Article  Google Scholar 

  54. Li, X. L., Zhang, G. Y., Bai, X. D., Sun, X. M., Wang, X. R., Wang, E., & Dai, H. J. (2008). Highly conducting graphene sheets and Langmuir-Blodgett films. Nature Nanotechnology, 3, 538–542.

    Article  Google Scholar 

  55. Zheng, Q. B., Ip, W. H., Lin, X. Y., Yousefi, N., Yeung, K. K., Li, Z. G., & Kim, J. K. (2011). Transparent conductive films consisting of ultra large graphene sheets produced by Langmuir-Blodgett assembly. Acs Nano, 5, 6039–6051.

    Article  Google Scholar 

  56. Hu, L. B., Kim, H. S., Lee, J. Y., Peumans, P., & Cui, Y. (2010). Scalable coating and properties of transparent, flexible, silver nanowire electrodes. Acs Nano, 4, 2955–2963.

    Article  Google Scholar 

  57. Li, J. T., Ye, F., Vaziri, S., Muhammed, M., Lemme, M. C., & Ostling, M. (2013). Efficient inkjet printing of graphene. Advanced Materials, 25, 3985–3992.

    Article  Google Scholar 

  58. Kong, D., Le, L. T., Li, Y., Zunino, J. L., & Lee, W. (2012). Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials. Langmuir, 28, 13467–13472.

    Article  Google Scholar 

  59. Dua, V., Surwade, S. P., Ammu, S., Agnihotra, S. R., Jain, S., Roberts, K. E., Park, S., Ruoff, R. S., & Manohar, S. K. (2010). All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angewandte Chemie-International Edition, 49, 2154–2157.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingbin Zheng .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zheng, Q., Kim, JK. (2015). Fabrication of Graphene-Based Transparent Conducting Thin Films. In: Graphene for Transparent Conductors., vol 23. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2769-2_3

Download citation

Publish with us

Policies and ethics