Skip to main content

Introduction to Transparent Conductive Films

  • Chapter
  • First Online:
Graphene for Transparent Conductors

Abstract

Transparent conductive films (TCFs), which are optically transparent and electrically conductive thin layers, are necessary components in many modern devices. The applications of TCFs and the traditional TCF materials including transparent conducting oxides, transparent conducting polymers, transparent conducting metals, and transparent conducting carbon, are discussed in this chapter. A most lately emerging candidate to replace the commonly used indium tin oxide (ITO) is graphene, which shows a higher transparency over a wider wavelength range than ITO, SWNTs, and thin metallic films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hecht, D. S., Hu, L. B., & Irvin, G. (2011). Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Advanced Materials, 23(13), 1482–1513.

    Google Scholar 

  2. Wu, Z. C., Chen, Z. H., Du, X., Logan, J. M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J. R., Tanner, D. B., Hebard, A. F., & Rinzler, A. G. (2004). Transparent, conductive carbon nanotube films. Science, 305(5688), 1273–1276.

    Google Scholar 

  3. Wang, X., Zhi, L., Tsao, N., Tomovic, Z., Li, J., & Muellen, K. (2008). Transparent carbon films as electrodes in organic solar cells. Angewandte Chemie-International Edition, 47(16), 2990–2992.

    Google Scholar 

  4. NanoMarkets (2012). Accessed August 1, 2013 from: www.NanoMarkets.net.

  5. Display-search (2014). Accessed July 15, 2014 from: http://www.displaysearch.com/cps/rde/xchg/displaysearch/hs.xsl/news.asp.

  6. Wassei, J. K., Kaner, R. B. (2010). Graphene, a promising transparent conductor. Materials Today, 13(3), 52–59.

    Google Scholar 

  7. Gordon, R. G. (2000). Criteria for choosing transparent conductors. MRS Bulletin, 25(8), 52–57.

    Google Scholar 

  8. Kim, S., & Taya, M. (2012). Electrochromic windows based on V2O5-TiO2 and poly (3,3-dimethyl-3,4-dihydro-2 H-thieno[3,4-b][1,4]dioxepine) coatings. Solar Energy Materials and Solar Cells, 107, 225–229.

    Google Scholar 

  9. Hu, M. J., Gao, J. F., Dong, Y. C., Li, K., Shan, G. C., Yang, S. L., & Li, R. K. Y. (2012). Flexible transparent PES/Silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding. Langmuir, 28(18), 7101–7106.

    Google Scholar 

  10. Thomas, G. (1997). Materials science—Invisible circuits. Nature, 389(6654), 907–908.

    Google Scholar 

  11. Display-search. Quarterly advanced global TV shipment and forecast report.

    Google Scholar 

  12. Schindler, A., Schau, P., & Fruehauf, N. (2009). Active-matrix and flexible liquid-crystal displays with carbon-nanotube pixel electrodes. Journal of the Society for Information Display, 17(10), 853–860.

    Google Scholar 

  13. Wang, J., Liang, M. H., Fang, Y., Qiu, T. F., Zhang, J., & Zhi, L. J. (2012). Rod-coating: Towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Advanced Materials, 24(21), 2874–2878.

    Google Scholar 

  14. Luechinger, N. A., Athanassiou, E. K., Stark, W. J. (2008). Graphene-stabilized copper nanoparticles as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics. Nanotechnology, 19(44), 445201.

    Google Scholar 

  15. Wang, S., Ang, P. K., Wang, Z. Q., Tang, A. L. L., Thong, J. T. L., & Loh, K. P. (2010). High mobility, printable, and solution-processed graphene electronics. Nano Letters, 10(1), 92–98.

    Google Scholar 

  16. Zhu, X. Z., Han, Y. Y., Liu, Y., Ruan, K. Q., Xu, M. F., Wang, Z. K., Jie, J. S., & Liao, L. S. (2013). The application of single-layer graphene modified with solution-processed TiOx and PEDOT:PSS as a transparent conductive anode in organic light-emitting diodes. Organic Electronics, 14(12), 3348–3354.

    Google Scholar 

  17. Giangregorio, M. M., Losurdo, M., Bianco, G. V., Dilonardo, E., Capezzuto, P., & Bruno, G. (2013). Synthesis and characterization of plasmon resonant gold nanoparticles and graphene for photovoltaics. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 178(9), 559–567.

    Google Scholar 

  18. Park, H., Brown, P. R., Buloyic, V., & Kong, J. (1996). Graphene as transparent conducting electrodes in organic photovoltaics: Studies in graphene morphology, hole transporting layers, and counter electrodes. Nano Letters, 12(1), 133–140.

    Google Scholar 

  19. Zhang, D. H., Ryu, K., Liu, X. L., Polikarpov, E., Ly, J., Tompson, M. E., Zhou, C. W. (2006). Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Letters, 6(9), 1880–1886.

    Google Scholar 

  20. Forrest, S. R. (2004). The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 428(6986), 911–918.

    Google Scholar 

  21. Na, S. I., Kim, S. S., Jo, J., & Kim, D. Y. (2008). Efficient and flexible ito-free organic solar cells using highly conductive polymer anodes. Advanced Materials, 20(21), 4061–4067.

    Google Scholar 

  22. Chang, Y. M., Wang, L., & Su, W. F. (2008). Polymer solar cells with poly(3,4-ethylenedioxythiophene) as transparent anode. Organic Electronics, 9(6), 968–973.

    Google Scholar 

  23. Azulai, D., Belenkova, T., Gilon, H., Barkay, Z., & Markovich, G. (2009). Transparent metal nanowire thin films prepared in mesostructured templates. Nano Letters, 9(12), 4246–4249.

    Google Scholar 

  24. Hu, L., Wu, H., & Cui, Y. (2011). Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bulletin, 36, 760–765.

    Google Scholar 

  25. Zheng, Q. B., Ip, W. H., Lin, X. Y., Yousefi, N., Yeung, K. K., Li, Z. G., & Kim, J. K. (2011). Transparent conductive films consisting of ultra large graphene sheets produced by Langmuir-Blodgett assembly. Acs Nano, 5(7), 6039–6051.

    Google Scholar 

  26. Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191.

    Google Scholar 

  27. OLED-Info (2014). Accessed May 1, 2014 from: http://www.oled-info.com/flexible-oled.

  28. Holst-Centre (2014). Accessed July 5, 2014 from: http://www.holstcentre.com/Home/PartneringinResearch/SharedPrograms/TechnologyIntegration/OPV.aspx.

  29. Ginley, D. S. (2010). Handbook of Transparent Conductors. Springer New York Heidelberg Dordrecht London: Springer.

    Google Scholar 

  30. Lin, H., Yu, J. S., Wang, N. N., Huang, C. H., & Jiang, Y. D. (2010). Fabrication and characterization of photo cathode materials for transparent organic light-emitting diodes. 5th international symposium on advanced optical manufacturing and testing technologies: optoelectronic materials and devices for detector, imager, display, and energy conversion technology, 7658.

    Google Scholar 

  31. Sberveglieri, G., Groppelli, S., & Coccoli, G. (1988). Radio-frequency magnetron sputtering growth and characterization of indium tin oxide (ITO) thin-films for NO2 gas sensors. Sensor Actuator, 15(3), 235–242.

    Google Scholar 

  32. O’Dwyer, C., Szachowicz, M., Visimberga, G., Lavayen, V., Newcomb, S. B., & Torres, C. M. S. (2009). Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices. Nature Nanotechnology, 4(4), 239–244.

    Google Scholar 

  33. Mayer, G. (2006). New classes of tough composite materials—Lessons from natural rigid biological systems. Materials Science and Engineering C-Bio S, 26(8), 1261–1268.

    Google Scholar 

  34. Zuev, D. A., Lotin, A. A., Novodvorsky, O. A., Lebedev, F. V., Khramova, O. D., Petuhov, I. A., Putilin, P. N., Shatohin, A. N., Rumyanzeva, M. N., & Gaskov, A. M. (2012). Pulsed laser deposition of ITO thin films and their characteristics. Semiconductors, 46(3), 410–413.

    Google Scholar 

  35. Korosi, L., Papp, S., Beke, S., Pecz, B., Horvath, R., Petrik, P., Agocs, E., & Dekany, I. (2012). Highly transparent ITO thin films on photosensitive glass: sol-gel synthesis, structure, morphology and optical properties. Applied Physics a-Materials Science & Processing, 107(2), 385–392.

    Google Scholar 

  36. Wu, G. M., Zhou, Y., Ding, Y., & Yin, T. L. (2013). Preparation of ITO Thin Films by Injection Ultrasound Spray Pyrolysis and its Physical Properties. Integrated Ferroelectrics, 144(1), 161–168.

    Google Scholar 

  37. Senthilkumar, V., Vickraman, P., Jayachandran, M., & Sanjeeviraja, C. (2010). Structural and optical properties of indium tin oxide (ITO) thin films with different compositions prepared by electron beam evaporation. Vacuum, 84(6), 864–869.

    Google Scholar 

  38. Wan, Q., Dattoli, E. N., Fung, W. Y., Guo, W., Chen, Y. B., Pan, X. Q., & Lu, W. (2006). High-performance transparent conducting oxide nanowires. Nano Letters, 6(12), 2909–2915.

    Google Scholar 

  39. Heusing, S., de Oliveira, P. W., Kraker, E., Haase, A., Palfinger, C., & Veith, M. (2009). Wet chemical deposited ITO coatings on flexible substrates for organic photodiodes. Thin Solid Films, 518(4), 1164–1169.

    Google Scholar 

  40. Kim, H., Horwitz, J. S., Kushto, G., Pique, A., Kafafi, Z. H., Gilmore, C. M., & Chrisey, D. B. (2000). Effect of film thickness on the properties of indium tin oxide thin films. Journal of Applied Physics, 88(10), 6021–6025.

    Google Scholar 

  41. Minami, T. (2008). Present status of transparent conducting oxide ing oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes. Thin Solid Films, 516(17), 5822–5828.

    Google Scholar 

  42. Coutts, T. J., Young, D. L., & Li, X. N. (2000). Characterization of transparent conducting oxides. MRS Bulletin, 25(8), 58–65.

    Google Scholar 

  43. Furubayashi, Y., Hitosugi, T., Yamamoto, Y., Inaba, K., Kinoda, G., Hirose, Y., Shimada, T., & Hasegawa, T. (2005). A transparent metal: Nb-doped anatase TiO2. Applied Physics Letters, 86(25), 252101.

    Google Scholar 

  44. Minami, T. (2005). Transparent conducting oxide semiconductors for transparent electrodes. Semiconductor Science and Technology, 20(4), S35–S44.

    Google Scholar 

  45. Minami, T. (2008). Substitution of transparent conducting oxide thin films for indium tin oxide transparent electrode applications. Thin Solid Films, 516(7), 1314–1321.

    Google Scholar 

  46. Wang, X., Zhi, L. J., & Mullen, K. (2008). Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 8(1), 323–327.

    Google Scholar 

  47. Schlatmann, A. R., Wilms Floet, D., Hilberer, A., Garten, F., Smulders, P. J. M., Klapwijk, T. M., & Hadziioannou, G. (1996). Indium contamination from the indium–tin–oxide electrode in polymer light-emitting diodes. Applied Physics Letter, 69, 1764.

    Google Scholar 

  48. Kaufman, J. H., Brock, P. J., DiPietro, R., Salem, J., & Goitia, J. A. (1996). Degradation and failure of MEH-PPV light-emitting diodes. Journal of Applied Physics, 79, 2745–2751

    Google Scholar 

  49. Andersson, A., Johansson, N., Broms, P., Yu, N., Lupo, D., & Salaneck, W. R. (1998). Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs. Advanced Materials, 10(11), 859–863.

    Google Scholar 

  50. Wang, L., Yang, Y., Marks, T. J., Liu, Z. F., & Ho, S. T. (2005). Near-infrared transparent electrodes for precision Teng-Man electro-optic measurements: In2O3 thin-film electrodes with tunable near-infrared transparency. Applied Physics Letters, 87(16), 161107.

    Google Scholar 

  51. Kumar, A., & Zhou, C. W. (2010). The race to replace tin-doped indium oxide: which material will win? Acs Nano, 4(1), 11–14.

    Google Scholar 

  52. Jo, G., Choe, M., Lee, S., Park, W., Kahng, Y. H., & Lee, T. (2012). The application of graphene as electrodes in electrical and optical devices. Nanotechnology, 23(11), 112001.

    Google Scholar 

  53. Wang, P. C., Liu, L. H., Mengistie, D. A., Li, K. H., Wen, B. J., Liu, T. S., & Chu, C. W. (2013). Transparent electrodes based on conducting polymers for display applications. Displays, 34(4), 301–314.

    Google Scholar 

  54. Wang, P. C., & MacDiarmid, A. G. (2007). Integration of polymer-dispersed liquid crystal composites with conducting polymer thin films toward the fabrication of flexible display devices. Displays, 28(3), 101–104.

    Google Scholar 

  55. Wang, Y., Liu, S. H., Dang, F. Y., Li, Y., Yin, Y. M., Liu, J., Xu, K., Piao, X. C., & Xie, W. F. (2012). An efficient flexible white organic light-emitting device with a screen-printed conducting polymer anode. Journal of Physics D: Applied Physics, 45(40), 402002.

    Google Scholar 

  56. Lee, H. J., Park, T. H., Choi, J. H., Song, E. H., Shin, S. J., Kim, H., Choi, K. C., Park, Y. W., & Ju, B. K. (2013). Negative mold transfer patterned conductive polymer electrode for flexible organic light-emitting diodes. Organic Electronics, 14(1), 416–422.

    Google Scholar 

  57. Stenger-Smith, J. D. (1998). Intrinsically electrically conducting polymers. Synthesis, characterization, and their applications. Progress in Polymer Science, 23(1), 57–79.

    Google Scholar 

  58. Mccullough, R. D., Tristramnagle, S., Williams, S. P., Lowe, R. D., & Jayaraman, M. (1993). Self-orienting head-to-tail poly(3-alkylthiophenes)—new insights on structure-property relationships in conducting polymers. Journal of the American Chemical Society, 115(11), 4910–4911.

    Google Scholar 

  59. Cirpan, A., Kucukyavuz, Z., & Kucukyavuz, S. (2003). Synthesis, characterization and electrical conductivity of poly(p-phenylene vinylene). Turkish Journal of Chemistry, 27(2), 135–143.

    Google Scholar 

  60. Avlyanov, J. K., Kuhn, H. H., Josefowicz, J. Y., & MacDiarmid, A. G. (1997). In-situ deposited thin films of polypyrrole: Conformational changes induced by variation of dopant and substrate surface. Synthetic Metals, 84(1–3), 153–154.

    Google Scholar 

  61. Avlyanov, J. K., Josefowicz, J. Y., & Macdiarmid, A. G. (1995). Atomic-force microscopy surface-morphology studies of in-situ deposited polyaniline thin-films. Synthetic Metals, 73(3), 205–208.

    Google Scholar 

  62. Lim, T. H., Oh, K. W., & Kim, S. H. (2012). Self-assembly supramolecules to enhance electrical conductivity of polyaniline for a flexible organic solar cells anode. Solar Energy Materials and Solar Cells, 101, 232–240.

    Google Scholar 

  63. Hohnholz, D., Okuzaki, H., & MacDiarmid, A. G. (2005). Plastic electronic devices through line patterning of conducting polymers. Advanced Functional Materials, 15(1), 51–56.

    Google Scholar 

  64. Ha, Y. H., Nikolov, N., Pollack, S. K., Mastrangelo, J., & Martin, B. D., Shashidhar, R. (2004). Towards a transparent, highly conductive poly(3,4-ethylenedioxythiophene). Advanced Functional Materials, 14(6), 615–622.

    Google Scholar 

  65. Winther-Jensen, B., & West, K. (2004). Vapor-phase polymerization of 3,4-ethylenedioxythiophene: A route to highly conducting polymer surface layers. Macromolecules, 37(12), 4538–4543.

    Google Scholar 

  66. Xia, Y. J., Sun, K., & Ouyang, J. Y. (2012). Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells. Energy & Environmental Science, 5(1), 5325–5332.

    Google Scholar 

  67. Alemu, D., Wei, H. Y., Ho, K. C., & Chu, C. W. (2012). Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy & Environmental Science, 5(11), 9662–9671.

    Google Scholar 

  68. Kim, Y. H., Sachse, C., Machala, M. L., May, C., Muller-Meskamp, L., & Leo, K. (2011). Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ito-free organic solar cells. Advanced Functional Materials, 21(6), 1076–1081.

    Google Scholar 

  69. Badre, C., Marquant, L., Alsayed, A. M., & Hough, L. A. (2012). Highly conductive poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) films using 1-ethyl-3-methylimidazolium tetracyanoborate ionic liquid. Advanced Functional Materials, 22(13), 2723–2727.

    Google Scholar 

  70. Xia, Y. J., Sun, K., & Ouyang, J. Y. (2012). Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Advanced Materials, 24(18), 2436–2440.

    Google Scholar 

  71. Fabretto, M. V., Evans, D. R., Mueller, M., Zuber, K., Hojati-Talemi, P., Short, R. D., Wallace, G. G., & Murphy, P. J. (2012). Polymeric material with metal-like conductivity for next generation organic electronic devices. Chemistry of Materials, 24(20), 3998–4003.

    Google Scholar 

  72. McCullough, R. D. (1998). The chemistry of conducting polythiophenes. Advanced Materials, 10(2), 93–116.

    Google Scholar 

  73. Kao, C. Y., Lee, B., Wielunski, L. S., Heeney, M., McCulloch, I., Garfunkel, E., Feldman, L. C., & Podzorov, V. (2009). Doping of conjugated polythiophenes with alky silanes. Advanced Functional Materials, 19(12), 1906–1911.

    Google Scholar 

  74. De Carvalho, L. C., Dos Santos, C. N., Alves, H. W. L., & Alves, J. L. A. (2003). Theoretical studies of poly (para-phenylene vinylene) (PPV) and poly (para-phenylene) (PPP). Microelectronics Journal, 34(5–8), 623–625.

    Google Scholar 

  75. Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burns, P. L., & Holmes, A. B. (1990). Light-emitting-diodes based on conjugated polymers. Nature, 347(6293), 539–541.

    Google Scholar 

  76. Sariciftci, N. S., Braun, D., Zhang, C., Srdanov, V. I., Heeger, A. J., Stucky, G., & Wudl, F. (1993). Semiconducting polymer-buckminsterfullerene heterojunctions—diodes, photodiodes, and photovoltaic cells. Applied Physics Letters, 62(6), 585–587.

    Google Scholar 

  77. Arias, A. C., Roman, L. S., Kugler, T., Toniolo, R., Meruvia, M. S., & Hummelgen, I. A. (2000). The use of tin oxide thin films as a transparent electrode in PPV based light-emitting diodes. Thin Solid Films, 371(1–2), 201–206.

    Google Scholar 

  78. Soylu, M. (2012). Fabrication and characterization of transparent MEH-PPV/n-GaN (0001) heterojunction devices. Optical Materials, 34(5), 878–883.

    Google Scholar 

  79. MacDiarmid, A. G. (2001). “Synthetic metals”: A novel role for organic polymers (Nobel lecture). Angewandte Chemie-International Edition, 40(14), 2581–2590.

    Google Scholar 

  80. Wang, P. C., & MacDiarmid, A. G. (2001). Dependency of properties of in situ deposited polypyrrole films on dopant anion and substrate surface. Synthetic Metals, 119(1–3), 367–368.

    Google Scholar 

  81. Jang, K. S., Han, S. S., Suh, J. S., & Oh, E. J. (2001). Synthesis and characterization of alcohol soluble polypyrrole. Synthetic Metals, 119(1–3), 107–108.

    Google Scholar 

  82. Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure and Applied Chemistry, 74(5), 857–867.

    Google Scholar 

  83. Huang, L. M., Chen, C. H., & Wen, T. C. (2006). Development and characterization of flexible electrochromic devices based on polyaniline and poly (3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid). Electrochimica Acta, 51(26), 5858–5863.

    Google Scholar 

  84. Virji, S., Huang, J. X., Kaner, R. B., & Weiller, B. H. (2004). Polyaniline nanofiber gas sensors: Examination of response mechanisms. Nano Letters, 4(3), 491–496.

    Google Scholar 

  85. Macdiarmid, A. G., & Epstein, A. J. (1994). The concept of secondary doping as applied to polyaniline. Synthetic Metals, 65(2–3), 103–116.

    Google Scholar 

  86. Avlyanov, J. K., Min, Y. G., Macdiarmid, A. G., & Epstein, A. J. (1995). Polyaniline—conformational-changes induced in solution by variation of solvent and doping level. Synthetic Metals, 72(1), 65–71.

    Google Scholar 

  87. Xia, Y. N., Macdiarmid, A. G., & Epstein, A. J. (1994). Camphorsulfonic acid fully doped polyaniline emeraldine salt—in-situ observation of electronic and conformational-changes induced by organic vapors by an ultraviolet-visible near-infrared spectroscopic method. Macromolecules, 27(24), 7212–7214.

    Google Scholar 

  88. Bruk, L., Fedorov, V., Sherban, D., Simashkevich, A., Usatii, I., Bobeico, E., & Morvillo, P. (2009). Isotype bifacial silicon solar cells obtained by ITO spray pyrolysis. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 159–60, 282–285.

    Google Scholar 

  89. Jaymand, M. (2013). Recent progress in chemical modification of polyaniline. Progress in Polymer Science, 38(9), 1287–1306.

    Google Scholar 

  90. Park, S., Lee, T. J., Kim, D. M., Kim, J. C., Kim, K., Kwon, W., Ko, Y. G., Choi, H., Chang, T., & Ree, M. (2010). Electrical Memory Characteristics of a Nondoped pi-Conjugated Polymer Bearing Carbazole Moieties. Journal of Physical Chemistry B, 114(32), 10294–10301.

    Google Scholar 

  91. Bello, A., Giannetto, M., Mori, G., Seeber, R., Terzi, F., & Zanardi, C. (2007). Optimization of the DPV potential waveform for determination of ascorbic acid on PEDOT-modified electrodes. Sensor Actuat B-Chem, 121(2), 430–435.

    Google Scholar 

  92. Groenendaal, B. L., Jonas, F., Freitag, D., Pielartzik, H., & Reynolds, J. R. (2000). Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future. Advanced Materials, 12(7), 481–494.

    Google Scholar 

  93. Pettersson, L. A. A., Ghosh, S., & Inganas, O. (2002). Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate). Organic Electronics, 3(3–4), 143–148.

    Google Scholar 

  94. Jonsson, S. K. M., Birgerson, J., Crispin, X., Greczynski, G., Osikowicz, W., van der Gon, A. W. D., Salaneck, W. R., & Fahlman, M. (2003). The effects of solvents on the morphology and sheet resistance in poly (3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films. Synthetic Metals, 139(1), 1–10.

    Google Scholar 

  95. Kim, Y. B., Park, S., & Hong, J. W. (2009). Fabrication of flexible polymer dispersed liquid crystal films using conducting polymer thin films as the driving electrodes. Thin Solid Films, 517(10), 3066–3069.

    Google Scholar 

  96. Kang, M. G., & Guo, L. J. (2007). Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes. Advanced Materials, 19(10), 1391–1396.

    Google Scholar 

  97. Rathmell, A. R., Bergin, S. M., Hua, Y. L., Li, Z. Y., & Wiley, B. J. (2010). The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Advanced Materials, 22(32), 3558–3563.

    Google Scholar 

  98. Hu, L. B., Kim, H. S., Lee, J. Y., Peumans, P., & Cui, Y. (2010). Scalable coating and properties of transparent, flexible, silver nanowire electrodes. Acs Nano, 4(5), 2955–2963.

    Google Scholar 

  99. Dan, B., Irvin, G. C., & Pasquali, M. (2009). Continuous and scalable fabrication of transparent conducting carbon nanotube films. Acs Nano, 3(4), 835–843.

    Google Scholar 

  100. Li, J., Hu, L., Wang, L., Zhou, Y., Gruner, G., & Marks, T. J. (2006). Organic light-emitting diodes having carbon nanotube anodes. Nano Letters, 6(11), 2472–2477.

    Google Scholar 

  101. Du, J. H., Pei, S. F., Ma, L. P., & Cheng, H. M. (2014).5th anniversary article: Carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices. Advanced Materials, 26(13), 1958–1991.

    Google Scholar 

  102. De, S., & Coleman, J. N. (2010). Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? Acs Nano, 4(5), 2713–2720.

    Google Scholar 

  103. Geng, H. Z., Kim, K. K., So, K. P., Lee, Y. S., Chang, Y., & Lee, Y. H. (2007). Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. Journal of the American Chemical Society, 129(25), 7758–7759.

    Google Scholar 

  104. Dettlaff-Weglikowska, U., Skakalova, V., Graupner, R., Jhang, S. H., Kim, B. H., Lee, H. J., Ley, L., Park, Y. W., Berber, S., Tomanek, D., & Roth, S. (2005). Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks. Journal of the American Chemical Society, 127(14), 5125–5131.

    Google Scholar 

  105. Parekh, B. B., Fanchini, G., Eda, G., & Chhowalla, M. (2007). Improved conductivity of transparent single-wall carbon nanotube thin films via stable postdeposition functionalization. Applied Physics Letters, 90(12), 121913.

    Google Scholar 

  106. Wang, Y., Di, C. A., Liu, Y. Q., Kajiura, H., Ye, S. H., Cao, L. C., Wei, D. C., Zhang, H. L., Li, Y. M., & Noda, K. (2008). Optimizing single-walled carbon nanotube films for applications in electroluminescent devices. Advanced Materials, 20(23), 4442–4449.

    Google Scholar 

  107. Song, Y. I., Yang, C. M., Kim, D. Y., Kanoh, H., & Kaneko, K. (2008). Flexible transparent conducting single-wall carbon nanotube film with network bridging method. Journal of Colloid and Interface Science, 318(2), 365–371.

    Google Scholar 

  108. Yim, J. H., Kim, Y. S., Koh, K. H., & Lee, S. (2008). Fabrication of transparent single wall carbon nanotube films with low sheet resistance. Journal of Vacuum Science & Technology B, 26(2), 851–855.

    Google Scholar 

  109. Hecht, D. S., Heintz, A. M., Lee, R., Hu, L. B., Moore, B., Cucksey, C., & Risser, S. (2011). High conductivity transparent carbon nanotube films deposited from superacid (vol 22, 075201, 2011). Nanotechnology, 22(16), 075201.

    Google Scholar 

  110. Jackson, R., Domercq, B., Jain, R., Kippelen, B., & Graham, S. (2008). Stability of doped transparent carbon nanotube electrodes. Advanced Functional Materials, 18(17), 2548–2554.

    Google Scholar 

  111. Jo, J. W., Jung, J. W., Lee, J. U., & Jo, W. H. (2010). Fabrication of highly conductive and transparent thin films from single-walled carbon nanotubes using a new non-ionic surfactant via spin coating. Acs Nano, 4(9), 5382–5388.

    Google Scholar 

  112. Liu, W. B., Pei, S. F., Du, J. H., Liu, B. L., Gao, L. B., Su, Y., Liu, C., & Cheng, H. M. (2011). Additive-free dispersion of single-walled carbon nanotubes and its application for transparent conductive films. Advanced Functional Materials, 21(12), 2330–2337.

    Google Scholar 

  113. Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10451–10453.

    Google Scholar 

  114. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669.

    Google Scholar 

  115. Berger, C., Song, Z. M., Li, X. B., Wu, X. S., Brown, N., Naud, C., Mayou, D., Li, T. B., Hass, J., Marchenkov, A. N., Conrad, E. H., First, P. N., & de Heer, W. A. (2006). Electronic confinement and coherence in patterned epitaxial graphene. Science, 312(5777), 1191–1196.

    Google Scholar 

  116. Reina, A., Jia, X. T., Ho, J., Nezich, D., Son, H. B., Bulovic, V., Dresselhaus, M. S., & Kong, J. (2009). Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 9(1), 30–35.

    Google Scholar 

  117. Li, D. S., Windl, W., & Padture, N. P. (2009). Toward site-specific stamping of graphene. Advanced Materials, 21(12), 1243–1246.

    Google Scholar 

  118. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J. H., Kim, P., Choi, J. Y., & Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457(7230), 706–710.

    Google Scholar 

  119. Bonaccorso, F., Sun, Z., Hasan, T., & Ferrari, A. C. (2010). Graphene photonics and optoelectronics. Nature Photonics, 4, 611–622.

    Google Scholar 

  120. Blake, P., Brimicombe, P. D., Nair, R. R., Booth, T. J., Jiang, D., Schedin, F., Ponomarenko, L. A., Morozov, S. V., Gleeson, H. F., Hill, E. W., Geim, A. K., & Novoselov, K. S. (2008). Graphene-based liquid crystal device. Nano Letters, 8(6), 1704–1708.

    Google Scholar 

  121. Bae, S., Kim, H., Lee, Y., Xu, X. F., Park, J. S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R., Song, Y. I., Kim, Y. J., Kim, K. S., Ozyilmaz, B., Ahn, J. H., Hong, B. H., & Iijima, S. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 5(8), 574–578.

    Google Scholar 

  122. Lee, J. Y., Connor, S. T., Cui, Y., & Peumans, P. (2008). Solution-processed metal nanowire mesh transparent electrodes. Nano Letters, 8(2), 689–692.

    Google Scholar 

  123. Sahu, D. R., Lin, S. Y., & Huang, J. L. (2006). ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode. Applied Surface Science, 252(20), 7509–7514.

    Google Scholar 

  124. Hamberg, I., & Granqvist, C. G. (1986). Evaporated Sn-Doped In2o3 films—basic optical-properties and applications to energy-efficient windows. Journal of Applied Physics, 60(11), R123–R159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingbin Zheng .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zheng, Q., Kim, JK. (2015). Introduction to Transparent Conductive Films. In: Graphene for Transparent Conductors., vol 23. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2769-2_1

Download citation

Publish with us

Policies and ethics