Skip to main content

Abstract

The financial industry is one of the most influential driving forces behind the research into stochastic processes. This is due to the fact that it relies on stochastic models for valuation and risk management. But perhaps more surprisingly, it was also one of the main drivers that led to their initial discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Other very important factors are, for example, the creditworthiness of the debtor or the rate of inflation.

  2. 2.

    By put–call parity (6.22), the implied volatility for puts and calls in an arbitrage-free market has to be identical for all pairs T, K.

References

  • Aletti, G., Capasso, V.: Profitability in a multiple strategy market. Decis. Econ. Finance 26, 145–152 (2003)

    MATH  MathSciNet  Google Scholar 

  • Bachelier, L.: Théorie de la spéculation. Ann. Sci. École Norm. Sup. 17, 21–86 (1900)

    MATH  MathSciNet  Google Scholar 

  • Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Pol. Econ. 81, 637–654 (1973)

    MATH  Google Scholar 

  • Borodin, A., Salminen, P.: Handbook of Brownian Motion: Facts and Formulae. Birkhä user, Boston (1996)

    Book  MATH  Google Scholar 

  • Boyle, P., Tian, Y.: Pricing lookback and barrier options under the CEV process. J. Fin. Quant. Anal. 34, 241–264 (1999)

    Google Scholar 

  • Brace, A., Gatarek, D., Musiela, M.: The market model of interest rate dynamics. Math. Fin. 7, 127–154 (1997)

    MATH  MathSciNet  Google Scholar 

  • Branger, N., Reichmann, O., Wobben, M.: Pricing electricity derivatives on an hourly basis. J. Energ. Market 3, 51–89 (2010)

    Google Scholar 

  • Cox, J.C.: The constant elasticity of variance option pricing model. J. Portfolio Manage. 22, 15–17 (1996)

    Google Scholar 

  • Cox, J.C., Ross, S.A., Rubinstein, M.: Option pricing: A simplified approach. J. Fin. Econ. 7, 229–263 (1979)

    MATH  Google Scholar 

  • Dai, W., Heyde, C.C.: Itô’s formula with respect to fractional Brownian motion and its application. J. Appl. Math. Stoch. Anal. 9, 439–448 (1996)

    MATH  MathSciNet  Google Scholar 

  • Dalang, R.C., Morton, A., Willinger, W.: Equivalent martingale measures and non-arbitrage in stochastic securities market models. Stochast. Stochast. Rep. 29, 185–201 (1990)

    MATH  MathSciNet  Google Scholar 

  • Davis, M.H.A.: Piecewise-deterministic Markov processes: A general class of non-diffusion stochastic models. J. R. Stat. Soc. Ser. B 46, 353–388 (1984)

    MATH  Google Scholar 

  • Delbaen, F., Schachermeyer, W.: A general version of the fundamental theorem of asset pricing. Math. Annal. 300, 463–520 (1994)

    MATH  Google Scholar 

  • Duffie, D.: Dynamic Asset Pricing Theory. Princeton University Press, Princeton, NJ (1996)

    Google Scholar 

  • Dupire, B.: Pricing with a smile. RISK 1, 18–20 (1994)

    Google Scholar 

  • Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderten Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annal. Phys. 17, 549–560 (1905)

    MATH  Google Scholar 

  • Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extreme Events for Insurance and Finance. Springer, Berlin (1997)

    Book  Google Scholar 

  • Hagan, P.S., Kumar, D., Lesniewski, A., Woodward, D.E.: Managing smile risk. Wilmott Mag. 1, 84–102 (2002)

    Google Scholar 

  • Harrison, J.M., Kreps, D.M.: Martingales and arbitrage in multiperiod securities markets. J. Econ. Theory 20, 381–408 (1979)

    MATH  MathSciNet  Google Scholar 

  • Harrison, J.M., Pliska, S.R.: Martingales and stochastic integrals in the theory of continuous trading. Stochast. Process. Appl. 11, 215–260 (1981)

    MATH  MathSciNet  Google Scholar 

  • Heath, D., Jarrow, R., Morton, A.: Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation. Econometrica 1, 77–105 (1992)

    Article  Google Scholar 

  • Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Fin. Stud. 6, 327–343 (1993)

    Google Scholar 

  • Hunt, P.J., Kennedy, J.E.: Financial Derivatives in Theory and Practice. Wiley, New York (2000)

    MATH  Google Scholar 

  • Hull, J., White, A.: Pricing interest rate derivative securities. Rev. Fin. Stud. 4, 573–592 (1990)

    Google Scholar 

  • Itô, K., McKean, H.P.: Diffusion Processes and Their Sample Paths. Springer, Berlin (1965)

    Book  MATH  Google Scholar 

  • Jamshidian, F.: LIBOR and swap market models and measures. Fin. Stochast. 1, 43–67 (1997)

    MATH  Google Scholar 

  • Karlin, S., Taylor H.M.: A Second Course in Stochastic Processes. Academic, New York (1981)

    MATH  Google Scholar 

  • Kou, S.: A jump-diffusion model for option pricing. Manage. Sci. 48, 1086–1101 (2002)

    MATH  Google Scholar 

  • Lewis, A.L.: Option Valuation Under Stochastic Volatility. Finance Press, Newport Beach (2000)

    MATH  Google Scholar 

  • Merton, R.C.: Theory of rational option pricing. Bell J. Econ. Manage. Sci. 4, 141–183 (1973)

    MathSciNet  Google Scholar 

  • Merton, R.C.: Option pricing when underlying stock returns are discontinuous. J. Fin. Econ. 3, 125–144 (1976)

    MATH  Google Scholar 

  • Miltersen, K.R., Sandmann, K., Sondermann, D.: Closed form solutions for term structure derivatives with log-normal interest rates. J. Fin. 52, 409–430 (1997)

    Google Scholar 

  • Musiela, M., Rutkowski, M.: Martingale Methods in Financial Modelling. Springer, Berlin (1998)

    Google Scholar 

  • Øksendal, B.: Stochastic Differential Equations. Springer, Berlin (1998)

    Book  Google Scholar 

  • Pliska, S.R.: Introduction to Mathematical Finance: Discrete-Time Models. Blackwell, Oxford (1997)

    Google Scholar 

  • Rolski, T., Schmidli, H., Schmidt, V., Teugels, J.: Stochastic Processes for Insurance and Finance. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  • Shevchenko, G.: Mixed fractional stochastic differential equations with jumps. Stochastics 86, 203–217 (2014)

    MATH  MathSciNet  Google Scholar 

  • Shiryaev, A.N., Cherny, A.S.: Vector stochastic integrals and the fundamental theorems of asset pricing. Tr. Mat. Inst. Steklova 237, 12–56 (2002)

    MathSciNet  Google Scholar 

  • Vasicek, O.: An equilibrium characterisation of the term structure. J. Fin. Econ. 5, 177–188 (1977)

    Google Scholar 

  • Wilmott, P., Dewynne, J.N., Howison, S.D.: Option Pricing: Mathematical Models and Computation. Oxford Financial Press, Oxford (1993)

    Google Scholar 

  • Zähle, M.: Long range dependence, no arbitrage and the Black-Scholes formula. Stochast. Dynam. 2, 265–280 (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Capasso, V., Bakstein, D. (2015). Applications to Finance and Insurance. In: An Introduction to Continuous-Time Stochastic Processes. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-2757-9_6

Download citation

Publish with us

Policies and ethics