Skip to main content

Abstract

Let \((W_{t})_{t\in \mathbb{R}_{+}}\) be a Wiener process on the probability space \((\varOmega,\mathcal{F},P)\), equipped with its natural filtration \((\mathcal{F}_{t})_{t\in \mathbb{R}_{+}}\), \(\mathcal{F}_{t} =\sigma (W_{s},0 \leq s \leq t)\). Furthermore, let a(t, x), b(t, x) be deterministic measurable functions in \([t_{0},T] \times \mathbb{R}\) for some \(t_{0} \in \mathbb{R}_{+}.\) Finally, consider a real-valued random variable u 0; we will denote by \(\mathcal{F}_{u^{0}}\) the σ-algebra generated by u 0, and we assume that \(\mathcal{F}_{u^{0}}\) is independent of \((\mathcal{F}_{t})\) for t ∈ (t 0, +). We will denote by \(\mathcal{F}_{u^{0},t}\) the σ-algebra generated by the union of \(\mathcal{F}_{u^{0}}\) and \(\mathcal{F}_{t}\) for t ∈ (t 0, +). 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It suffices to make use of the following theorem for \(E\left [{\left (\int _{0}^{t}b_{N}(s,u_{N}(s))dW_{s}\right )}^{2n}\right ]\):Theorem. If \({f}^{n} \in \mathcal{C}([0,T])\) for \(n \in {\mathbb{N}}^{{\ast}}\) , then

    $$\displaystyle{E\left [{\left (\int _{0}^{T}f(t)dW_{t}\right )}^{2n}\right ] \leq {[n(2n - 1)]}^{n}{T}^{n-1}E\left [\int _{ 0}^{T}{f}^{2n}(t)dt\right ].}$$

    Proof.

    See, e.g., Friedman (1975).

  2. 2.

    The assumption \(\vert f(z)\vert \leq K(1 +\vert z\vert ^{2n})\) implies that \(E[\vert f(z)\vert ] \leq K(1 + E[\vert z\vert ^{2n}])\) and, by Theorem 4.15, \(E[\vert u(t + h,t,x)\vert ^{2n}] < +\infty \). Therefore, f(u(t + h, t, x) − x) is integrable.

References

  • Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley, New York (1974)

    MATH  Google Scholar 

  • Baldi, P.: Equazioni differenziali stocastiche. UMI, Bologna (1984)

    Google Scholar 

  • Breiman, L.: Probability. Addison-Wesley, Reading, MA (1968)

    MATH  Google Scholar 

  • Champagnat, N., Ferriére, R., Méléard, S.: Unifying evolutionary dynamics: From individula stochastic processes to macroscopic models. Theor. Pop. Biol. 69, 297–321 (2006)

    Article  MATH  Google Scholar 

  • Chan, K.C., Karolyi, G.A., Longstaff, F.A., Sanders, A.B.: An empirical comparison of alternative models of the short-term interest rate. J. Fin. 47, 1209–1227 (1992)

    Article  Google Scholar 

  • Feller, W.: An Introduction to Probability Theory and Its Applications. Wiley, New York (1971)

    MATH  Google Scholar 

  • Friedman, A.: Stochastic Differential Equations and Applications. Academic, London (1975). Two volumes bounded as one, Dover, Mineola, NY (2004)

    Google Scholar 

  • Gihman, I.I., Skorohod, A.V.: Stochastic Differential Equations. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  • Gihman, I.I., Skorohod, A.V.: The Theory of Random Processes. Springer, Berlin (1974)

    Google Scholar 

  • Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Heidelberg (1999)

    Google Scholar 

  • Lapeyre, B., Pardoux, E., Sentis, R.: Introduction to Monte-Carlo Methods for Transport and Diffusion Equations. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  • Lipster, R., Shiryaev, A.N.: Statistics of Random Processes, I: General Theory. Springer, Heidelberg (1977)

    Google Scholar 

  • Lipster, R., Shiryaev, A.N.: Statistics of Random Processes, II: Applications, 2nd edn. Springer, Heidelberg (2010)

    Google Scholar 

  • Mao, X., Marion, G., Renshaw, E.: Environmental Brownian noise suppresses explosions in population dynamics. Stoch. Proc. Appl. 97, 95–110 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Nowman, K.B.: Gaussian estimation of single-factor continuous time models of the term structure of interest rate. J. Fin. 52, 1695–1706 (1997)

    Article  Google Scholar 

  • Øksendal, B.: Stochastic Differential Equations. Springer, Berlin (1998)

    Book  Google Scholar 

  • Pascucci, A.: Calcolo Stocastico per la Finanza. Springer Italia, Milano (2008)

    Book  MATH  Google Scholar 

  • Risken, H.: The Fokker–Planck Equation. Methods of Solution and Applications, 2nd edn. Springer, Heidelberg (1989)

    Google Scholar 

  • Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes and Martingales, vol. 1. Wiley, New York (1994)

    MATH  Google Scholar 

  • Schuss, Z.: Theory and Applications of Stochastic Processes: An Analytical Approach. Springer, New York (2010)

    Book  Google Scholar 

  • Sobczyk, K.: Stochastic Differential Equations: With Applications to Physics and Engineering. Kluwer, Dordrecht (1991)

    Book  MATH  Google Scholar 

  • Taira, K.: Diffusion Processes and Partial Differential Equations. Academic, New York (1988)

    MATH  Google Scholar 

  • Ventcel’, A.D.: A Course in the Theory of Stochastic Processes. Nauka, Moscow (1975) (in Russian). Second Edition 1996

    Google Scholar 

  • Wu, F., Mao, X., Chen, K.: A highly sensitive mean-reverting process in finance and the Euler–Maruyama approximations. J. Math. Anal. Appl. 348, 540–554 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Capasso, V., Bakstein, D. (2015). Stochastic Differential Equations. In: An Introduction to Continuous-Time Stochastic Processes. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-2757-9_4

Download citation

Publish with us

Policies and ethics