Skip to main content

Abstract

We assume that the reader is already familiar with the basic motivations and notions of probability theory. In this chapter we recall the main mathematical concepts, methods, and theorems according to the Kolmogorov approach Kolmogorov (1956) by using as main references the books by Métivier (1968) and Neveu (1965). An interesting introduction can be found in Gnedenko (1963). We shall refer to Appendix A of this book for the required theory on measure and integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a revision, see the appendix A or, in addition, e.g., Kolmogorov and Fomin (1961).

  2. 2.

    For this classical result of analysis, see, e.g., Kolmogorov and Fomin (1961).

References

  • Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley, New York (1974)

    MATH  Google Scholar 

  • Baldi, P.: Equazioni differenziali stocastiche. UMI, Bologna (1984)

    Google Scholar 

  • Biagini, F, Hu, Y., ksendal, B., Zhang, T.: Stochastic Calculus for Fractional Brownian Motion and Applications. Springer, London (2008)

    Google Scholar 

  • Dai, W., Heyde, C.C.: Itô’s formula with respect to fractional Brownian motion and its application. J. Appl. Math. Stoch. Anal. 9, 439–448 (1996)

    MATH  MathSciNet  Google Scholar 

  • Dieudonné, J.: Foundations of Modern Analysis. Academic, New York (1960)

    MATH  Google Scholar 

  • Di Nunno, G., Øksendal, B., Proske, F.: Malliavin Calculus for Levy Processes with Applications to Finance. Springer, Berlin/Heidelberg (2009)

    Book  Google Scholar 

  • Franke, J., Härdle, W.K., Hafner, C.M.: Statistics of Financial Markets: An Introduction, 2nd edn. Springer, Heidelberg (2011)

    Book  Google Scholar 

  • Friedman, A.: Stochastic Differential Equations and Applications. Academic, London (1975). Two volumes bounded as one, Dover, Mineola, NY (2004)

    Google Scholar 

  • Gihman, I.I., Skorohod, A.V.: Stochastic Differential Equations. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  • Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Springer, New York (1991)

    MATH  Google Scholar 

  • Klenke, A.: Probability Theory. A Comprehensive Course, 2nd edn. Springer, Heidelberg (2014)

    Google Scholar 

  • Kolmogorov, A.N., Fomin, E.S.V.: Elements of Theory of Functions and Functional Analysis. Groylock, Moscow (1961)

    MATH  Google Scholar 

  • Lipster, R., Shiryaev, A.N.: Statistics of Random Processes, II: Applications, 2nd edn. Springer, Heidelberg (2010)

    Google Scholar 

  • Mandelbrot, K., van Ness, J.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968)

    MATH  MathSciNet  Google Scholar 

  • Medvegyev, P.: Stochastic Integration Theory. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  • Mishura, Y.: Stochastic Calculus for Fractional Brownian Motion and Related Processes. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  • Nualart, D.: Stochastic calculus with respect to fractional Brownian motion. Ann. Fac. Sci. Toulouse-Mathématiques 15, 63–77 (2006)

    MATH  MathSciNet  Google Scholar 

  • Øksendal, B.: Stochastic Differential Equations. Springer, Berlin (1998)

    Book  Google Scholar 

  • Shevchenko, G.: Mixed fractional stochastic differential equations with jumps. Stochastics 86, 203–217 (2014)

    MATH  MathSciNet  Google Scholar 

  • Skorohod, A.V.: Studies in the Theory of Random Processes. Dover, New York (1982)

    Google Scholar 

  • Williger, W., Taqqu, M., Teverovsky, V.: Stock market process and long range dependence. Finance Stoch. 3, 1–13 (1999)

    Google Scholar 

  • Zähle, M.: Long range dependence, no arbitrage and the Black-Scholes formula. Stochast. Dynam. 2, 265–280 (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Capasso, V., Bakstein, D. (2015). The Itô Integral. In: An Introduction to Continuous-Time Stochastic Processes. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-2757-9_3

Download citation

Publish with us

Policies and ethics