Skip to main content

Abstract

We commence along the lines of the founding work of Kolmogorov by regarding stochastic processes as a family of random variables defined on a probability space and thereby define a probability law on the set of trajectories of the process. More specifically, stochastic processes generalize the notion of (finite-dimensional) vectors of random variables to the case of any family of random variables indexed in a general set T. Typically, the latter represents “time” and is an interval of \(\mathbb{R}\) (in the continuous case) or \(\mathbb{N}\) (in the discrete case). For a nice and elementary introduction to this topic, the reader may refer to Parzen (1962).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By the Feller property.

  2. 2.

    For simplicity, but without loss of generality, we will assume that E[X t ] = 0, for all t. In the case where E[X t ] ≠ 0, we can always define a variable \(Y _{t} = X_{t} - E[X_{t}]\), so that E[Y t ] = 0. In that case \((Y _{t})_{t\in \mathbb{R}_{+}}\) will again be a process with independent increments, so that the analysis is analogous.

References

  • Anderson, W.J.: Continuous-Time Markov Chains: An Application-Oriented Approach. Springer, New York (1991)

    Book  Google Scholar 

  • Applebaum, D.: Levy Processes and Stochastic Calculus. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  • Ash, R.B., Gardner M.F.: Topics in Stochastic Processes. Academic, London (1975)

    MATH  Google Scholar 

  • Baldi, P.: Equazioni differenziali stocastiche. UMI, Bologna (1984)

    Google Scholar 

  • Bauer, H.: Probability Theory and Elements of Measure Theory. Academic, London (1981)

    MATH  Google Scholar 

  • Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  • Billingsley, P.: Probability and Measure. Wiley, New York (1986)

    MATH  Google Scholar 

  • Bosq, D.: Linear Processes in Function Spaces. Theory and Applications. Springer, New York (2000)

    Book  MATH  Google Scholar 

  • Breiman, L.: Probability. Addison-Wesley, Reading, MA (1968)

    MATH  Google Scholar 

  • Bremaud, P.: Point Processes and Queues: Martingale Dynamics. Springer, Heidelberg (1981)

    Book  MATH  Google Scholar 

  • Chung, K.L.: A Course in Probability Theory, 2nd edn. Academic, New York (1974)

    MATH  Google Scholar 

  • Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. I. Wiley-Interscience, New York (1966)

    Google Scholar 

  • Çynlar, E.: Introduction to Stochastic Processes. Prentice Hall, Englewood Cliffs, NJ (1975)

    Google Scholar 

  • Daley, D., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Springer, Berlin (1988)

    MATH  Google Scholar 

  • Daley, D., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Volume II: General Theory and Structure. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  • Devijver, P.A., Kittler, J.: Pattern Recognition. A Statistical Approach. Prentice-Hall, Englewood Cliffs, NJ (1982)

    MATH  Google Scholar 

  • Di Nunno, G., Øksendal, B., Proske, F.: Malliavin Calculus for Levy Processes with Applications to Finance. Springer, Berlin/Heidelberg (2009)

    Book  Google Scholar 

  • Doob, J.L.: Stochastic Processes. Wiley, New York (1953)

    MATH  Google Scholar 

  • Dynkin, E.B.: Markov Processes, vols. 1–2. Springer, Berlin (1965)

    Book  MATH  Google Scholar 

  • Ethier, S.N., Kurtz, T.G.: Markov Processes, Characterization and Convergence. Wiley, New York (1986)

    Book  MATH  Google Scholar 

  • Feller, W.: An Introduction to Probability Theory and Its Applications. Wiley, New York (1971)

    MATH  Google Scholar 

  • Ghanen, R.G., Spanos, P.D.: Stochastic Finite Elements. A Spectral Approach. Revised Edition. Dover Publication, Mineola, NY (2003)

    Google Scholar 

  • Gihman, I.I., Skorohod, A.V.: The Theory of Random Processes. Springer, Berlin (1974)

    Google Scholar 

  • Grigoriu, M.: Stochastic Calculus: Applications to Science and Engineering. Birkhäuser, Boston (2002)

    Book  Google Scholar 

  • Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland, Kodansha (1989)

    MATH  Google Scholar 

  • Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes. Springer Lecture Notes in Mathematics. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  • Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  • Kallenberg, O.: Foundations of Modern Probability. Springer, Berlin (1997)

    MATH  Google Scholar 

  • Karlin, S., Taylor, H.M.: A First Course in Stochastic Processes. Academic, New York (1975)

    MATH  Google Scholar 

  • Karlin, S., Taylor H.M.: A Second Course in Stochastic Processes. Academic, New York (1981)

    MATH  Google Scholar 

  • Karr, A.F.: Point Processes and Their Statistical Inference. Marcel Dekker, New York (1986)

    MATH  Google Scholar 

  • Klenke, A.: Probability Theory. Springer, Heidelberg (2008)

    Book  Google Scholar 

  • Klenke, A.: Probability Theory. A Comprehensive Course, 2nd edn. Springer, Heidelberg (2014)

    Google Scholar 

  • Kyprianou, A.E.: Fluctuations of Lévy Processes with Applications, 2nd edn. Springer, Heidelberg (2014)

    Book  MATH  Google Scholar 

  • Lamperti, J.: Stochastic Processes: A Survey of the Mathematical Theory. Springer, New York (1977)

    Book  MATH  Google Scholar 

  • Last, G., Brandt, A.: Marked Point Processes on the Real Line: The Dynamic Approach. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  • Mercer, J.: Functions of positive and negative type and their connection with the theory of integral equations. Philos. Trans. Roy. Soc. Lond. 209, 415–446 (1909)

    Article  MATH  Google Scholar 

  • Métivier, M.: Notions fondamentales de la théorie des probabilités. Dunod, Paris (1968)

    MATH  Google Scholar 

  • Meyer, P.A.: Probabilités et Potentiel. Ilermann, Paris (1966)

    MATH  Google Scholar 

  • Mikosch, T.: Non-Life Insurance Mathematics, 2nd edn. Springer, Berlin/Heidelberg (2009)

    Book  MATH  Google Scholar 

  • Parzen, E.: Statistical inference on time series by Hilbert space methods,Technical Report no. 23, Statistics Department, Stanford University, Stanford, CA, Jan 1959

    Google Scholar 

  • Parzen, E.: Stochastic Processes. Holden-Day, San Francisco (1962)

    MATH  Google Scholar 

  • Protter, P.: Stochastic Integration and Differential Equations. Springer, Berlin (1990). Second Edition 2004

    Google Scholar 

  • Ramsay, J.O., Silverman, B.W.: Functional Data Analysis, 2nd edn. Springer, Berlin (1990). Second Edition 2004

    Google Scholar 

  • Renardy, M., Rogers, R.C.: An Introduction to Partial Differential Equations, 2nd edn. Springer, New York (2005)

    Google Scholar 

  • Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, Heidelberg (1991)

    Book  MATH  Google Scholar 

  • Robert, P.: Stochastic Networks and Queues. Springer, Heidelberg (2003)

    Book  MATH  Google Scholar 

  • Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes and Martingales, vol. 1. Wiley, New York (1994)

    MATH  Google Scholar 

  • Sato, K.I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  • Schuss, Z.: Theory and Applications of Stochastic Processes: An Analytical Approach. Springer, New York (2010)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Capasso, V., Bakstein, D. (2015). Stochastic Processes. In: An Introduction to Continuous-Time Stochastic Processes. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-2757-9_2

Download citation

Publish with us

Policies and ethics