Skip to main content

A Genetic View of the Mitochondrial Role in Ageing: Killing Us Softly

  • Chapter
  • First Online:
Longevity Genes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 847))

Abstract

In contrast to the nuclear genome, the mitochondrial DNA (mtDNA) is maternally inherited and resides in multiple cellular copies that may vary in sequence (heteroplasmy). Although the interaction between mtDNA and nuclear DNA-encoded factors (mito-nuclear interaction) is vital, the mtDNA accumulates mutations an order of magnitude faster than the nuclear genome both during evolution and during the lifetime of the individual, thus requiring tight mito-nuclear co-evolution. These unique features drew the attention of many to suggest a role for the mitochondria in ageing. Although an excess of mtDNA mutations has been found in aged humans and animal models, most of these mutations had minor functional potential. Moreover, there are mtDNA mutations that recur in aged humans, but do not have any clear functionality. Nevertheless, accumulation of recurrent private mutations with minor functionality in the fast-ageing, mtDNA polymerase mutated mice (Pol-gamma), suggested that these very mtDNA alterations participate in ageing. This introduces a paradox: how would either single or recurrent mutations with negligible functionality play a role in a major chronic phenotype such as ageing?

Here, we propose a hypothesis to partially resolve this paradox: accumulation of mitochondrial mutations with subtle functionality, which was overlooked by the mechanisms of selection, supplemented by slightly affected fusion-fission cycles, will hamper mitochondrial functional complementation within cells, disrupt mito-nuclear interactions and lead to ageing. Since certain mito-nuclear genotypes are less functionally compatible than others, and since the mtDNA and the nuclear genome segregate independently among generations, mild functionality of mutations will have differential effect on individuals in the population thus explaining the large variability in the ageing phenotype even within ethnic groups. We emphasize the role of recurrent mtDNA mutations with functional potential during evolution and during the lifetime of the individual.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barzilai N, Guarente L, Kirkwood TB, Partridge L, Rando TA, Slagboom PE (2012) The place of genetics in ageing research. Nat Rev Genet 13(8):589–594

    CAS  PubMed  Google Scholar 

  2. Cerqueira FM, Kowaltowski AJ (2013) Mitochondrial metabolism in aging: effect of dietary interventions. Ageing Res Rev 12(1):22–28

    CAS  PubMed  Google Scholar 

  3. Schwender H, Ruczinski I, Ickstadt K (2011) Testing SNPs and sets of SNPs for importance in association studies. Biostatistics 12(1):18–32

    PubMed Central  PubMed  Google Scholar 

  4. Kam-Thong T, Czamara D, Tsuda K, Borgwardt K, Lewis CM, Erhardt-Lehmann A et al (2011) EPIBLASTER-fast exhaustive two-locus epistasis detection strategy using graphical processing units. Eur J Hum Genet 19(4):465–471

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Castellana S, Vicario S, Saccone C (2011) Evolutionary patterns of the mitochondrial genome in metazoa: exploring the role of mutation and selection in mitochondrial protein coding genes. Genome biology and evolution 3:1067–1079

    Google Scholar 

  6. Mishmar D, Zhidkov I (2010) Evolution and disease converge in the mitochondrion. Biochim Biophys Acta 1797(6–7):1099–1104

    CAS  PubMed  Google Scholar 

  7. Potluri P, Davila A, Ruiz-Pesini E, Mishmar D, O’Hearn S, Hancock S et al (2009) A novel NDUFA1 mutation leads to a progressive mitochondrial complex I-specific neurodegenerative disease. Mol Genet Metab 96(4):189–195

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Feder J, Ovadia O, Blech I, Cohen J, Wainstein J, Harman-Boehm I et al (2009) Parental diabetes status reveals association of mitochondrial DNA haplogroup J1 with type 2 diabetes. BMC Med Genet 10:60

    PubMed Central  PubMed  Google Scholar 

  9. Wallace DC, Ruiz-Pesini E, Mishmar D (2003) mtDNA variation, climatic adaptation, degenerative diseases, and longevity. Cold Spring Harb Symp Quant Biol 68:479–486

    CAS  PubMed  Google Scholar 

  10. Hudson G, Keers S, Yu Wai Man P, Griffiths P, Huoponen K, Savontaus ML et al (2005) Identification of an X-chromosomal locus and haplotype modulating the phenotype of a mitochondrial DNA disorder. Am J Hum Genet 77(6):1086–1091

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Harman D (1955) Aging: a theory based on free radical and radiation chemistry. University of California Radiation Laboratory, Berkeley

    Google Scholar 

  12. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M et al (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308(5730):1909–1911

    CAS  PubMed  Google Scholar 

  13. Barja G (2013) Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxidants & redox signaling 19(12):1420–1445.

    Google Scholar 

  14. Trifunovic A, Hansson A, Wredenberg A, Rovio AT, Dufour E, Khvorostov I et al (2005) Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc Natl Acad Sci U S A 102(50):17993–17998

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Jacobs HT (2003) The mitochondrial theory of aging: dead or alive? Aging Cell 2(1):11–17

    CAS  PubMed  Google Scholar 

  16. Holt IJ, Harding AE, Morgan-Hughes JA (1988) Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331(6158):717–719

    CAS  PubMed  Google Scholar 

  17. Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM et al (1988) Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242(4884):1427–1430

    CAS  PubMed  Google Scholar 

  18. Schapira AH (2006) Mitochondrial disease. Lancet 368(9529):70–82

    CAS  PubMed  Google Scholar 

  19. Schapira AH (2012) Mitochondrial diseases. Lancet 379(9828):1825–1834

    CAS  PubMed  Google Scholar 

  20. Raina SZ, Faith JJ, Disotell TR, Seligmann H, Stewart CB, Pollock DD (2005) Evolution of base-substitution gradients in primate mitochondrial genomes. Genome Res 15(5):665–673

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Calvo SE, Mootha VK (2010) The mitochondrial proteome and human disease. Annu Rev Genomics Hum Genet 11:25–44

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Wallace DC (2007) Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. Annu Rev Biochem 76:781–821

    CAS  PubMed  Google Scholar 

  23. Levin L, Zhidkov I, Gurman Y, Hawlena H, Mishmar D (2013) Functional recurrent mutations in the human mitochondrial phylogeny—dual roles in evolution and disease. Genome Biol Evol 5(5):876–890

    PubMed Central  PubMed  Google Scholar 

  24. Pereira L, Soares P, Radivojac PLB, Samuels DC (2011) Comparing phylogeny and the predicted pathogenicity of protein variations reveals equal purifying selection across the global human mtDNA diversity. Am J Hum Genet 88(4):433–439

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Bar-Yaacov D, Blumberg A, Mishmar D (2012) Mitochondrial-nuclear co-evolution and its effects on OXPHOS activity and regulation. Biochim Biophys Acta 1819:1107–1111

    CAS  PubMed  Google Scholar 

  26. Rand DM (2008) Mitigating mutational meltdown in mammalian mitochondria. PLoS Biol 6(2):e35

    PubMed Central  PubMed  Google Scholar 

  27. Rand DM, Fry A, Sheldahl L (2006) Nuclear-mitochondrial epistasis and drosophila aging: introgression of Drosophila simulans mtDNA modifies longevity in D. melanogaster nuclear backgrounds. Genetics 172(1):329–341

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134(1):112–123

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Ellison CK, Burton RS (2008) Interpopulation hybrid breakdown maps to the mitochondrial genome. Evolution 62(3):631–638

    PubMed  Google Scholar 

  30. Ellison CK, Burton RS (2010) Cytonuclear conflict in interpopulation hybrids: the role of RNA polymerase in mtDNA transcription and replication. Journal of evolutionary biology 23(3):528–538

    Google Scholar 

  31. Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark AG, Hosseini S et al (2003) Natural selection shaped regional mtDNA variation in humans. Proc Natl Acad Sci U S A 100(1):171–176

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio V, Wallace DC (2004) Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303(5655):223–226

    CAS  PubMed  Google Scholar 

  33. Innocenti P, Morrow EH, Dowling DK (2011) Experimental evidence supports a sex-specific selective sieve in mitochondrial genome evolution. Science 332(6031):845–848

    CAS  PubMed  Google Scholar 

  34. Al Rawi S, Louvet-Vallee S, Djeddi A, Sachse M, Culetto E, Hajjar C et al (2011) Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334(6059):1144–1147

    CAS  PubMed  Google Scholar 

  35. Sato M, Sato K (2011) Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334(6059):1141–1144

    CAS  PubMed  Google Scholar 

  36. DeLuca SZ, O’Farrell PH (2012) Barriers to male transmission of mitochondrial DNA in sperm development. Dev Cell 22(3):660–668

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Moreno-Loshuertos R, Acin-Perez R, Fernandez-Silva P, Movilla N, Perez-Martos A, de Cordoba SR et al (2006) Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants. Nat Genet 38(11):1261–1128

    CAS  PubMed  Google Scholar 

  38. Kazuno AA, Munakata K, Nagai T, Shimozono S, Tanaka M, Yoneda M et al (2006) Identification of mitochondrial DNA polymorphisms that alter mitochondrial matrix pH and intracellular calcium dynamics. PLoS Genet 2(8):e128

    PubMed Central  PubMed  Google Scholar 

  39. Brown MD, Starikovskaya E, Derbeneva O, Hosseini S, Allen JC, Mikhailovskaya IE et al (2002) The role of mtDNA background in disease expression: a new primary LHON mutation associated with Western Eurasian haplogroup J. Hum Genet 110(2):130–138

    CAS  PubMed  Google Scholar 

  40. Carelli V, Ghelli A, Ratta M, Bacchilega E, Sangiorgi S, Mancini R et al (1997) Leber’s hereditary optic neuropathy: biochemical effect of 11778/ND4 and 3460/ND1 mutations and correlation with the mitochondrial genotype. Neurology 48(6):1623–1632

    CAS  PubMed  Google Scholar 

  41. D’Aurelio M, Vives-Bauza C, Davidson MM, Manfredi G (2010) Mitochondrial DNA background modifies the bioenergetics of NARP/MILS ATP6 mutant cells. Hum Mol Genet 19(2):374–386

    PubMed Central  PubMed  Google Scholar 

  42. Amar S, Shamir A, Ovadia O, Blanaru M, Reshef A, Kremer I et al (2007) Mitochondrial DNA HV lineage increases the susceptibility to schizophrenia among Israeli Arabs. Schizophr Res 94(1–3):354–358

    PubMed  Google Scholar 

  43. Rollins B, Martin MV, Sequeira PA, Moon EA, Morgan LZ, Watson SJ et al (2009) Mitochondrial variants in schizophrenia, bipolar disorder, and major depressive disorder. PLoS One 4(3):e4913

    PubMed Central  PubMed  Google Scholar 

  44. Canter JA, Olson LM, Spencer K, Schnetz-Boutaud N, Anderson B, Hauser MA et al (2008) Mitochondrial DNA polymorphism A4917G is independently associated with age-related macular degeneration. PLoS One 3(5):e2091

    PubMed Central  PubMed  Google Scholar 

  45. van der Walt JM, Nicodemus KK, Martin ER, Scott WK, Nance MA, Watts RL et al (2003) Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease. Am J Hum Genet 72(4):804–811

    PubMed Central  PubMed  Google Scholar 

  46. Ghezzi D, Marelli C, Achilli A, Goldwurm S, Pezzoli G, Barone P et al (2005) Mitochondrial DNA haplogroup K is associated with a lower risk of Parkinson’s disease in Italians. Eur J Hum Genet 13(6):748–752

    CAS  PubMed  Google Scholar 

  47. Achilli A, Olivieri A, Pala M, Hooshiar Kashani B, Carossa V, Perego UA et al (2011) Mitochondrial DNA backgrounds might modulate diabetes complications rather than T2DM as a whole. PLoS One 6(6):e21029

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Fuku N, Park KS, Yamada Y, Cho YM, Matsuo H, Segawa T et al (2007) Mitochondrial haplogroup N9a confers resistance against type 2 diabetes in Asians. Am J Hum Genet 80(3):407–415

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Mohlke KL, Jackson AU, Scott LJ, Peck EC, Suh YD, Chines PS et al (2005) Mitochondrial polymorphisms and susceptibility to type 2 diabetes-related traits in Finns. Hum Genet 118(2):1–10

    Google Scholar 

  50. Poulton J, Luan J, Macaulay V, Hennings S, Mitchell J, Wareham NJ (2002) Type 2 diabetes is associated with a common mitochondrial variant: evidence from a population-based case-control study. Hum Mol Genet 11(13):1581–1583

    CAS  PubMed  Google Scholar 

  51. Ruiz-Pesini E, Lapena AC, Diez-Sanchez C, Perez-Martos A, Montoya J, Alvarez E et al (2000) Human mtDNA haplogroups associated with high or reduced spermatozoa motility. Am J Hum Genet 67(3):682–696

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Cai XY, Wang XF, Li SL, Qian J, Qian DG, Chen F et al (2009) Association of mitochondrial DNA haplogroups with exceptional longevity in a Chinese population. PLoS One 4(7):e6423

    PubMed Central  PubMed  Google Scholar 

  53. Dato S, Passarino G, Rose G, Altomare K, Bellizzi D, Mari V et al (2004) Association of the mitochondrial DNA haplogroup J with longevity is population specific. Eur J Hum Genet 12(12):1080–1082

    CAS  PubMed  Google Scholar 

  54. De Benedictis G, Rose G, Carrieri G, De Luca M, Falcone E, Passarino G et al (1999) Mitochondrial DNA inherited variants are associated with successful aging and longevity in humans. FASEB J 13(12):1532–1536

    PubMed  Google Scholar 

  55. Niemi AK, Hervonen A, Hurme M, Karhunen PJ, Jylha M, Majamaa K (2003) Mitochondrial DNA polymorphisms associated with longevity in a Finnish population. Hum Genet 112(1):29–33

    CAS  PubMed  Google Scholar 

  56. Ross OA, McCormack R, Curran MD, Duguid RA, Barnett YA, Rea IM et al (2001) Mitochondrial DNA polymorphism: its role in longevity of the Irish population. Exp Gerontol 36(7):1161–1178

    CAS  PubMed  Google Scholar 

  57. Shlush LI, Atzmon G, Weisshof R, Behar D, Yudkovsky G, Barzilai N et al (2008) Ashkenazi Jewish centenarians do not demonstrate enrichment in mitochondrial haplogroup J. PLoS One 3(10):e3425

    PubMed Central  PubMed  Google Scholar 

  58. Ji F, Sharpley MS, Derbeneva O, Alves LS, Qian P, Wang Y et al (2012) Mitochondrial DNA variant associated with Leber hereditary optic neuropathy and high-altitude Tibetans. Proc Natl Acad Sci U S A 109(19):7391–7396

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Pravenec M, Hyakukoku M, Houstek J, Zidek V, Landa V, Mlejnek P et al (2007) Direct linkage of mitochondrial genome variation to risk factors for type 2 diabetes in conplastic strains. Genome Res 17(9):1319–1326

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Suissa S, Wang Z, Poole J, Wittkopp S, Feder J, Shutt TE et al (2009) Ancient mtDNA genetic variants modulate mtDNA transcription and replication. PLoS Genet 5(5):e1000474

    PubMed Central  PubMed  Google Scholar 

  61. Carelli V, Achilli A, Valentino ML, Rengo C, Semino O, Pala M et al (2006) Haplogroup effects and recombination of mitochondrial DNA: novel clues from the analysis of Leber hereditary optic neuropathy pedigrees. Am J Hum Genet 78(4):564–574

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Liang M, Guan M, Zhao F, Zhou X, Yuan M, Tong Y et al (2009) Leber’s hereditary optic neuropathy is associated with mitochondrial ND1 T3394C mutation. Biochem Biophys Res Commun 383(3):286–292

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Zhang M, Zhou X, Li C, Zhao F, Zhang J, Yuan M et al (2010) Mitochondrial haplogroup M9a specific variant ND1 T3394C may have a modifying role in the phenotypic expression of the LHON-associated ND4 G11778A mutation. Mol Genet Metab 101(2–3):192–199

    CAS  PubMed  Google Scholar 

  64. Gershoni M, Fuchs A, Shani N, Fridman Y, Corral-Debrinski M, Aharoni A et al (2010) Coevolution predicts direct interactions between mtDNA-encoded and nDNA-encoded subunits of oxidative phosphorylation complex I. J Mol Biol 404(1):158–171

    CAS  PubMed  Google Scholar 

  65. Grossman LI, Wildman DE, Schmidt TR, Goodman M (2004) Accelerated evolution of the electron transport chain in anthropoid primates. Trends Genet 20(11):578–585

    CAS  PubMed  Google Scholar 

  66. Osada N, Akashi H (2012) Mitochondrial-nuclear interactions and accelerated compensatory evolution: evidence from the primate cytochrome C oxidase complex. Mol Biol Evol 29(1):337–346

    CAS  PubMed  Google Scholar 

  67. Barreto FS, Burton RS (2013) Evidence for compensatory evolution of ribosomal proteins in response to rapid divergence of mitochondrial rRNA. Mol Biol Evol 30(2):310–314

    CAS  PubMed  Google Scholar 

  68. Gaspari M, Falkenberg M, Larsson NG, Gustafsson CM (2004) The mitochondrial RNA polymerase contributes critically to promoter specificity in mammalian cells. Embo J 23(23):4606–4614

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Barrientos A, Kenyon L, Moraes CT (1998) Human xenomitochondrial cybrids. Cellular models of mitochondrial complex I deficiency. J Biol Chem 273(23):14210–14217

    CAS  PubMed  Google Scholar 

  70. Gershoni M, Templeton AR, Mishmar D (2009) Mitochondrial bioenergetics as a major motive force of speciation. Bioessays 31(6):642–6450

    CAS  PubMed  Google Scholar 

  71. Rai E, Sharma S, Koul A, Bhat AK, Bhanwer AJ, Bamezai RN (2007) Interaction between the UCP2-866G/A, mtDNA 10398G/A and PGC1alpha p.Thr394Thr and p.Gly482Ser polymorphisms in type 2 diabetes susceptibility in North Indian population. Hum Genet 122(5):535–540

    CAS  PubMed  Google Scholar 

  72. Gershoni M, Levin L, Ovadia O, Toiw Y, Shani N, Dadon S, Barzilai N, Bergman A, Atzmon G, Wainstein J, Tsur A, Nijtmans L, Glaser B, Mishmar D (2014) Disrupting mitochondrial-nuclear co-evolution affects OXPHOS complex I integrity and impacts human health. Genome Biol Evol 6: 2665–2680

    Google Scholar 

  73. Houtkooper RH, Mouchiroud L, Ryu D, Moullan N, Katsyuba E, Knott G et al (2013) Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497(7450):451–457

    CAS  PubMed  Google Scholar 

  74. Tranah GJ (2011) Mitochondrial-nuclear epistasis: implications for human aging and longevity. Ageing Res Rev 10(2):238–252

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Schwartz M, Vissing J (2002) Paternal inheritance of mitochondrial DNA. N Engl J Med 347(8):576–580

    PubMed  Google Scholar 

  76. Kaneda H, Hayashi J, Takahama S, Taya C, Lindahl KF, Yonekawa H (1995) Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis. Proc Natl Acad Sci U S A 92(10):4542–4546

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Sharpley MS, Marciniak C, Eckel-Mahan K, McManus M, Crimi M, Waymire K et al (2012) Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell 151(2):333–343

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Hagstrom E, Freyer C, Battersby BJ, Stewart JB, Larsson NG (2014) No recombination of mtDNA after heteroplasmy for 50 generations in the mouse maternal germline. Nucleic Acids Res 42(2):1111–1116

    PubMed Central  PubMed  Google Scholar 

  79. Schon EA, DiMauro S, Hirano M, Gilkerson RW (2010) Therapeutic prospects for mitochondrial disease. Trends Mol Med 16(6):268–276

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Arnheim N, Cortopassi G (1992) Deleterious mitochondrial DNA mutations accumulate in aging human tissues. Mutat Res 275(3–6):157–167

    CAS  PubMed  Google Scholar 

  81. Bua E, Johnson J, Herbst A, Delong B, McKenzie D, Salamat S et al (2006) Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am J Hum Genet 79(3):469–480

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Chang MC, Hung SC, Chen WY, Chen TL, Lee CF, Lee HC et al (2005) Accumulation of mitochondrial DNA with 4977-bp deletion in knee cartilage—an association with idiopathic osteoarthritis. Osteoarthritis and Cartilage/OARS, Osteoarthritis Cartilage 13(11):1004–1011

    Google Scholar 

  83. Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC (1992) Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet 2(4):324–329

    CAS  PubMed  Google Scholar 

  84. Corral-Debrinski M, Shoffner JM, Lott MT, Wallace DC (1992) Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutat Res 275(3–6):169–180

    CAS  PubMed  Google Scholar 

  85. Cortopassi GA, Shibata D, Soong NW, Arnheim N (1992) A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci U S A 89(16):7370–7374

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Hattori K, Tanaka M, Sugiyama S, Obayashi T, Ito T, Satake T et al (1991) Age-dependent increase in deleted mitochondrial DNA in the human heart: possible contributory factor to presbycardia. Am Heart J 121(6 Pt 1):1735–1742

    CAS  PubMed  Google Scholar 

  87. Hayakawa M, Sugiyama S, Hattori K, Takasawa M, Ozawa T (1993) Age-associated damage in mitochondrial DNA in human hearts. Mol Cell Biochem 119(1–2):95–103

    CAS  PubMed  Google Scholar 

  88. Herbst A, Pak JW, McKenzie D, Bua E, Bassiouni M, Aiken JM (2007) Accumulation of mitochondrial DNA deletion mutations in aged muscle fibers: evidence for a causal role in muscle fiber loss. J Gerontol A Biol Sci Med Sci 62(3):235–245

    PubMed Central  PubMed  Google Scholar 

  89. Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38(5):518–520

    CAS  PubMed  Google Scholar 

  90. Linnane AW, Baumer A, Maxwell RJ, Preston H, Zhang C, Marzuki S (1990) Mitochondrial gene mutation: the aging process and degenerative diseases. Biochem Int 22(6):1067–1076

    CAS  PubMed  Google Scholar 

  91. Liu VW, Zhang C, Pang CY, Lee HC, Lu CY, Wei YH et al (1998) Independent occurrence of somatic mutations in mitochondrial DNA of human skin from subjects of various ages. Hum Mutat 11(3):191–196

    CAS  PubMed  Google Scholar 

  92. Mann VM, Cooper JM, Schapira AHV (1992) Quantitation of a mitochondrial DNA deletion in Parkinson’s disease. FEBS Lett 299(3):218–222

    CAS  PubMed  Google Scholar 

  93. Melov S, Shoffner JM, Kaufman A, Wallace DC (1995) Marked increase in the number and variety of mitochondrial DNA rearrangements in aging human skeletal muscle (published erratum appears in Nucleic Acids Res 1995 Dec 11;23(23):4938). Nucleic Acids Res 23(20):4122–4126

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Piko L, Hougham AJ, Bullpitt KJ (1988) Studies of sequence heterogeneity of mitochondrial DNA from rat and mouse tissues: evidence for an increased frequency of deletions/additions with aging. Mech Ageing Dev 43:279–293

    CAS  PubMed  Google Scholar 

  95. Reeve AK, Krishnan KJ, Elson JL, Morris CM, Bender A, Lightowlers RN et al (2008) Nature of mitochondrial DNA deletions in substantia nigra neurons. Am J Hum Genet 82(1):228–235

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Simonetti S, Chen X, DiMauro S, Schon EA (1992) Accumulation of deletions in human mitochondrial DNA during normal aging: analysis by quantitative PCR. Biochim Biophys Acta 1180(2):113–122

    CAS  PubMed  Google Scholar 

  97. Soong NW, Hinton DR, Cortopassi G, Arnheim N (1992) Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nat Genet 2:318–323

    CAS  PubMed  Google Scholar 

  98. Sugiyama S, Hattori K, Hayakawa M, Ozawa T (1992) Quantitative analysis of age-associated accumulation of mitochondrial DNA with deletion in human hearts. Biochem Biophys Res Commun 180:894–899

    Google Scholar 

  99. Wallace DC (1995) Mitochondrial DNA mutations in human disease and aging. In: Esser K, Martin GM (eds) Molecular aspects of aging. Wiley, New York, pp 163–177

    Google Scholar 

  100. Wei YH (1992) Mitochondrial DNA alterations as ageing-associated molecular events. Mutat Res 275:145–155

    CAS  PubMed  Google Scholar 

  101. Yang JH, Lee HC, Lin KJ, Wei YH (1994) A specific 4977-bp deletion of mitochondrial DNA in human ageing skin. Arch Dermatol Res 286(7):386–390

    CAS  PubMed  Google Scholar 

  102. Yen TC, Pang CY, Hsieh RH, Su CH, King KL, Wei YH (1992) Age-dependent 6 kb deletion in human liver mitochondrial DNA. Biochem Int 26:457–468

    CAS  PubMed  Google Scholar 

  103. Zhang C, Baumer A, Maxwell RJ, Linnane AW, Nagley P (1992) Multiple mitochondrial DNA deletions in an elderly human individual. FEBS Lett 297:4–8

    Google Scholar 

  104. Zhang C, Liu VW, Addessi CL, Sheffield DA, Linnane AW, Nagley P (1998) Differential occurrence of mutations in mitochondrial DNA of human skeletal muscle during aging (published erratum appears in Hum Mutat 1998;12(1):69). Hum Mutat 11(5):360–371

    CAS  PubMed  Google Scholar 

  105. Greaves LC, Elson JL, Nooteboom M, Grady JP, Taylor GA, Taylor RW et al (2012) Comparison of mitochondrial mutation spectra in ageing human colonic epithelium and disease: absence of evidence for purifying selection in somatic mitochondrial DNA point mutations. PLoS Genet 8(11):e1003082

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Greaves LC, Barron MJ, Campbell-Shiel G, Kirkwood TB, Turnbull DM (2011) Differences in the accumulation of mitochondrial defects with age in mice and humans. Mech Ageing Dev 132(11–12):588–591

    CAS  PubMed  Google Scholar 

  107. Gendron SP, Mallet JD, Bastien N, Rochette PJ (2012) Mitochondrial DNA common deletion in the human eye: a relation with corneal aging. Mech Ageing Dev 133(2–3):68–74

    CAS  PubMed  Google Scholar 

  108. Taylor RW, Barron MJ, Borthwick GM, Gospel A, Chinnery PF, Samuels DC et al (2003) Mitochondrial DNA mutations in human colonic crypt stem cells. J Clin Invest 112(9):1351–1360

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Kadenbach B, Munscher C, Frank V, Muller-Hocker J, Napiwotzki J (1995) Human aging is associated with stochastic somatic mutations of mitochondrial DNA. Mutat Res 338(1–6):161–172

    CAS  PubMed  Google Scholar 

  110. Murdock DG, Christacos NC, Wallace DC (2000) The age-related accumulation of a mitochondrial DNA control region mutation in muscle, but not brain, detected by a sensitive PNA-directed PCR clamping based method. Nucleic Acids Res 28(21):4350–4355

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Sondheimer N, Glatz CE, Tirone JE, Deardorff MA, Krieger AM, Hakonarson H (2011) Neutral mitochondrial heteroplasmy and the influence of aging. Hum Mol Genet 20(8):1653–1659

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Clark J, Dai Y, Simon DK (2011) Do somatic mitochondrial DNA mutations contribute to Parkinson’s disease? Parkinsons Dis 2011:659–694

    Google Scholar 

  113. Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH et al (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38(5):515–517

    CAS  PubMed  Google Scholar 

  114. Smigrodzki R, Parks J, Parker WD (2004) High frequency of mitochondrial complex I mutations in Parkinson’s disease and aging. Neurobiol Aging 25(10):1273–1281

    CAS  PubMed  Google Scholar 

  115. Greco M, Villani G, Mazzucchelli F, Bresolin N, Papa S, Attardi G (2003) Marked aging-related decline in efficiency of oxidative phosphorylation in human skin fibroblasts. FASEB J 17(12):1706–1708

    CAS  PubMed  Google Scholar 

  116. Krishnan KJ, Greaves LC, Reeve AK, Turnbull D (2007) The ageing mitochondrial genome. Nucleic Acids Res 35(22):7399–7405

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Li M, Schonberg A, Schaefer M, Schroeder R, Nasidze I, Stoneking M (2010) Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am J Hum Genet 87(2):237–249

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Ameur A, Stewart JB, Freyer C, Hagstrom E, Ingman M, Larsson NG et al (2011) Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins. PLoS Genet 7(3):e1002028

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Hua S, Lu C, Song Y, Li R, Liu X, Quan F et al (2012) High levels of mitochondrial heteroplasmy modify the development of ovine-bovine interspecies nuclear transferred embryos. Reprod Fertil Dev 24(3):501–509

    PubMed  Google Scholar 

  120. Klutsch CF, Seppala EH, Uhlen M, Lohi H, Savolainen P (2011) Segregation of point mutation heteroplasmy in the control region of dog mtDNA studied systematically in deep generation pedigrees. Int J Legal Med 125(4):527–535

    PubMed Central  PubMed  Google Scholar 

  121. Payne BA, Wilson IJ, Yu-Wai-Man P, Coxhead J, Deehan D, Horvath R et al (2013) Universal heteroplasmy of human mitochondrial DNA. Hum Mol Genet 22(2):384–390

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Avital G, Buchshtav M, Zhidkov I, Tuval Feder J, Dadon S, Rubin E et al (2012) Mitochondrial DNA heteroplasmy in diabetes and normal adults: role of acquired and inherited mutational patterns in twins. Hum Mol Genet 21(19):4214–4224

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Ye K, Lu J, Ma F, Keinan A, Gu Z (2014) Extensive pathogenicity of mitochondrial heteroplasmy in healthy human individuals. Proceedings of the National Academy of Sciences 111(29):10654–10659

    Google Scholar 

  124. Winklhofer KF, Haass C (2010) Mitochondrial dysfunction in Parkinson’s disease. Biochim Biophys Acta 1802(1):29–44

    CAS  PubMed  Google Scholar 

  125. Figge MT, Reichert AS, Meyer-Hermann M, Osiewacz HD (2012) Deceleration of fusion-fission cycles improves mitochondrial quality control during aging. PLoS Comput Biol 8(6):e1002576

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Stewart JB, Freyer C, Elson JL, Wredenberg A, Cansu Z, Trifunovic A et al (2008) Strong purifying selection in transmission of mammalian mitochondrial DNA. PLoS Biol 6(1):e10

    PubMed Central  PubMed  Google Scholar 

  127. Twig G, Shirihai OS (2011) The interplay between mitochondrial dynamics and mitophagy. Antioxid Redox Signal 14(10):1939–1951

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Suen DF, Narendra DP, Tanaka A, Manfredi G, Youle RJ (2010) Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells. Proc Natl Acad Sci U S A 107(26):11835–11840

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Rana A, Rera M, Walker DW (2013) Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc Natl Acad Sci U S A 110(21):8638–8643

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Jendrach M, Pohl S, Voth M, Kowald A, Hammerstein P, Bereiter-Hahn J (2005) Morpho-dynamic changes of mitochondria during ageing of human endothelial cells. Mech Ageing Dev 126(6–7):813–821

    CAS  PubMed  Google Scholar 

  131. Scheckhuber CQ, Erjavec N, Tinazli A, Hamann A, Nystrom T, Osiewacz HD (2007) Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol 9(1):99–105

    CAS  PubMed  Google Scholar 

  132. Ross JM, Stewart JB, Hagstrom E, Brene S, Mourier A, Coppotelli G et al (2013) Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature 501(7467):412–415

    Google Scholar 

  133. Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G (1999) Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286(5440):774–779

    CAS  PubMed  Google Scholar 

  134. Del Bo R, Crimi M, Sciacco M, Malferrari G, Bordoni A, Napoli L et al (2003) High mutational burden in the mtDNA control region from aged muscles: a single-fiber study. Neurobiol Aging 24(6):829–838

    CAS  PubMed  Google Scholar 

  135. Reich DE, Lander ES (2001) On the allelic spectrum of human disease. Trends Genet 17(9):502–510

    CAS  PubMed  Google Scholar 

  136. Ritchie MD (2011) Using biological knowledge to uncover the mystery in the search for epistasis in genome-wide association studies. Ann Hum Genet 75(1):172–182

    PubMed Central  PubMed  Google Scholar 

  137. Coskun PE, Ruiz-Pesini E, Wallace DC (2003) Control region mtDNA variants: longevity, climatic adaptation, and a forensic conundrum. Proc Natl Acad Sci U S A 100(5):2174–2176

    PubMed Central  CAS  PubMed  Google Scholar 

  138. Yao YG, Ellison FM, McCoy JP, Chen J, Young NS (2007) Age-dependent accumulation of mtDNA mutations in murine hematopoietic stem cells is modulated by the nuclear genetic background. Hum Mol Genet 16(3):286–294

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Orian Shirihai (Boston University),Dr. Antonio Enriquez (CNIP, Madrid) and members of the Mishmar lab for critical discussions that led to better articulation of the arguments brought about in this chapter. The study was funded by an Israeli Science Foundation grant (610/12) awarded to DM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Mishmar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Levin, L., Mishmar, D. (2015). A Genetic View of the Mitochondrial Role in Ageing: Killing Us Softly. In: Atzmon, PhD, G. (eds) Longevity Genes. Advances in Experimental Medicine and Biology, vol 847. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2404-2_4

Download citation

Publish with us

Policies and ethics