Skip to main content

Typing and Subtyping Methods for Pathogenic Escherichia coli

  • Chapter
  • First Online:
Detection and Typing Strategies for Pathogenic Escherichia coli

Part of the book series: SpringerBriefs in Food, Health, and Nutrition ((BRIEFSFOOD))

  • 1233 Accesses

Abstract

Typing and subtyping for the characterization of bacteria is important for epidemiological investigations into infectious diseases as well as for research purposes. Understanding the relationships between E. coli isolates from different samples is valuable in determining if an outbreak is occurring, identifying the sources of outbreaks, and to initiate recalls preventing further spread of the disease. Many methods have been developed for investigating the relationships between different isolates of E. coli over the past several decades. These have included both phenotypic and genetic-based methods. As sequencing technology has been developed and become more broadly available, new information about the genes present in pathogenic E. coli has been determined and many typing and subtyping methods based on the presence/absence of specific genes or differences in gene sequences have been published. This has led to a move away from more traditional phenotypic-based tests, such as biochemical profiling and serotyping, toward molecular and sequenced-based typing methods. Different methods provide various degrees of discrimination with highly discriminatory typing systems required for epidemiological investigations to provide links between cases of an outbreak and a potential food source. Such methods have become essential in tracking global outbreaks of foodborne disease. Understanding the global distributions of pathotypes and how they have evolved requires less discriminatory methods which have provided useful information about the history of how pathogenic E. coli have evolved. The need for suitable typing methods for understanding the epidemiology of outbreaks and the evolution of foodborne pathogens will continue as food distribution continues to be a global concern and foodborne pathogens continue to cause outbreaks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Ali G, Lacher D, Wick L, Qi W, Whittam T (2009) Genomic diversity of pathogenic Escherichia coli of the EHEC 2 clonal complex. BMC Genomics 10:296. doi:10.1186/1471-2164-10-296

    Google Scholar 

  • Arthur TM, Bosilevac JM, Brichta-Harhay DM, Kalchayanand N, King DA, Shackelford SD, Wheeler TL, Koohmaraie M (2008) Source tracking of Escherichia coli O157:H7 and Salmonella contamination in the lairage environment at commercial US beef processing plants and identification of an effective intervention. J Food Prot 71(9):1752–1760

    Google Scholar 

  • Arthur TM, Ahmed R, Chase-Topping M, Kalchayanand N, Schmidt JW, Bono JL (2013) Characterization of Escherichia coli O157:H7 strains isolated from supershedding cattle. Appl Environ Microbiol 79(14):4294–4303. doi:10.1128/AEM.00846-13

    CAS  Google Scholar 

  • Bando SY, Trabulsi LR, Moreira-Filho CA (2007) Genetic relationship of diarrheagenic Escherichia coli pathotypes among the enteropathogenic Escherichia coli O serogroup. Mem Inst Oswaldo Cruz 102(2):169–174. doi:10.1590/s0074-02762007005000018

    CAS  Google Scholar 

  • Bertelli C, Greub G (2013) Rapid bacterial genome sequencing: methods and applications in clinical microbiology. Clin Microbiol Infect 19(9):803–813. doi:10.1111/1469-0691.12217

    CAS  Google Scholar 

  • Blanco A, Blanco JE, Mora A, Dahbi G, Alonso AP, Gonzalez EA, Bernardez MI, Blanco J (2004) Serotypes, virulence genes, and intimin types of Shiga toxin (verotoxin)-producing Escherichia coli isolates from cattle in Spain and identification of a new intimin variant gene (eae-xi). J Clin Microbiol 42(2):645–651. doi:10.1128/JCM.42.2.645-651.2004

    CAS  Google Scholar 

  • Bohm H, Karch H (1992) DNA fingerprinting of Escherichia coli O157:H7 strains by pulsed-field gel electrophoresis. J Clin Microbiol 30(8):2169–2172

    CAS  Google Scholar 

  • Bono JL, Smith TPL, Keen JE, Harhay GP, McDaneld TG, Mandrell RE, Jung WK, Besser TE, Gerner-Smidt P, Bielaszewska M, Karch H, Clawson ML (2012) Phylogeny of Shiga toxin-producing Escherichia coli O157 isolated from cattle and clinically Ill humans. Mol Biol Evol 29(8):2047–2062. doi:10.1093/molbev/mss072

    CAS  Google Scholar 

  • Caetanoanolles G, Bassam BJ, Gresshoff PM (1992) Primer-template interactions during DNA amplification fingerprinting with single arbitrary oligonucleotides. Mol Gen Genet 235(2–3):157–165. doi:10.1007/Bf00279356

    CAS  Google Scholar 

  • Campos LC, Whittam TS, Gomes TAT, Andrade JRC, Trabulsi LR (1994) Escherichai coli serogroup O111 includes several clones of diarrheagenic strains with different virulence properties. Infect Immun 62(8):3282–3288

    CAS  Google Scholar 

  • Catarame TMG, O'Hanlon KA, Duffy G, Sheridan JJ, Blair IS, McDowell DA (2003) Optimization of enrichment and plating procedures for the recovery of Escherichia coli O111 and O26 from minced beef. J Appl Microbiol 95(5):949–957. doi:10.1046/j.1365-2672.2003.02065.x

    CAS  Google Scholar 

  • Centers for Disease Control and Prevention (1996) Standardized molecular subtyping of Escherichia coli O157:H7 by pulsed-field gel electrophoresis: a training manual. National Center for Infectious Diseases Atlanta, GA

    Google Scholar 

  • Centers for Disease Control and Prevention (2006) Importance of culture confirmation of Shiga toxin-producing Escherichia coli infection as illustrated by outbreaks of gastroenteritis—New York and North Carolina, 2005. MMWR Morb Mortal Wkly Rep 55(38):1042–1045

    Google Scholar 

  • Centers for Disease Control and Prevention (2012) PulseNet International Fact Sheet 508c. http://www.cdc.gov/ncezid/dfwed/pdfs/pulsenet-international-factsheet-508c.pdf. Accessed 14 May 2014

  • Centers for Disease Control and Prevention (2013a) PulseNet. http://www.cdc.gov/pulsenet/about/faq.html. Accessed 14 May 2014

  • Centers for Disease Control and Prevention (2013b) Standard Operating Procedure for PulseNet PFGE of Escherichia coli O157:H7, Escherichia coli non-O157 (STEC), Salmonella serotypes, Shigella sonnei and Shigella flexneri. http://www.cdc.gov/pulsenet/PDF/ecoli-shigella-salmonella-pfge-protocol-508c.pdf. Accessed 14 May 2014

  • Centers for Disease Control and Prevention (2014a) Escherichia coli O157:H7 and other Shiga toxin-producing Escherichia coli, pathogens and protocols. http://www.cdc.gov/pulsenet/pathogens/ecoli.html. Accessed 29 Sept 2014

  • Centers for Disease Control and Prevention (2014b) The international molecular subtyping network for foodborne disease surveillance. http://www.pulsenetinternational.org/. Accessed 14 May 2014

  • Centers for Disease Control and Prevention (2014c) Multiple locus variable-number tandem repeat analysis. http://www.cdc.gov/pulsenet/pathogens/mlva.html. Accessed 29 Sept 2014

  • Centers for Disease Control and Prevention (2014d) PulseNet standard operating procedure for analysis of MLVA data of Shiga toxin-producing Escherichia coli O157 (STEC O157 and Salmonella enterica serotypes Typhimurium and Enteriditis in BioNumerics—applied biosystems genetic analyzer 3130/3500 data. http://www.pulsenetinternational.org/assets/Uploads/PND16-MLVA-Analysis-ABI-Protocol.pdf. Accessed 8 Oct 2014

  • Clermont O, Bonacorsi S, Bingen E (2000) Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 66(10):4555–4558. doi:10.1128/Aem.66.10.4555-4558.2000

    CAS  Google Scholar 

  • Clermont O, Christenson JK, Denamur E, Gordon DM (2013) The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep 5(1):58–65. doi:10.1111/1758-2229.12019

    CAS  Google Scholar 

  • Dalla-Costa LM, Irino K, Rodrigues J, Rivera ING, Trabulsi LR (1998) Characterization of diarrhoeagenic Escherichia coli clones by ribotyping and ERIC-PCR. J Med Microbiol 47(3):227–234

    CAS  Google Scholar 

  • Dharmadi Y, Gonzalez R (2004) DNA microarrays: experimental issues, data analysis, and application to bacterial systems. Biotechnol Prog 20(5):1309–1324. doi:10.1021/bp0400240

    CAS  Google Scholar 

  • Drysdale M, MacRae M, Strachan NJC, Reid TMS, Ogden ID (2004) The detection of non-O157 Escherichia coli in food by immunomagnetic separation. J Appl Microbiol 97(1):220–224. doi:10.1111/j.1365-2672.2004.02301.x

    CAS  Google Scholar 

  • Dulguer MV, Fabbricotti SH, Bando SY, Moreira CA, Fagundes-Neto U, Scaletsky ICA (2003) Atypical enteropathogenic Escherichia coli strains: phenotypic and genetic profiling reveals a strong association between enteroaggregative E. coli heat-stable enterotoxin and diarrhea. J Infect Dis 188(11):1685–1694. doi:10.1086/379666

    CAS  Google Scholar 

  • Eklund M, Scheutz F, Siitonen A (2001) Clinical isolates of non-O157 Shiga toxin-producing Escherichia coli: serotypes, virulence characteristics, and molecular profiles of strains of the same serotype. J Clin Microbiol 39(8):2829–2834

    CAS  Google Scholar 

  • Eppinger M, Mammel MK, LeClerc JE, Ravel J, Cebula TA (2011a) Genome signatures of Escherichia coli O157:H7 isolates from the bovine host reservoir. Appl Environ Microbiol 77(9):2916–2925. doi:10.1128/aem.02554-10

    CAS  Google Scholar 

  • Eppinger M, Mammel MK, Leclerc JE, Ravel J, Cebula TA (2011b) Genomic anatomy of Escherichia coli O157:H7 outbreaks. P Natl Acad Sci U S A 108 (50):20142–20147. doi:10.1073/pnas.1107176108

    CAS  Google Scholar 

  • Fegan N, Barlow RS, Gobius KS (2006) Escherichia coli O157 somatic antigen is present in an isolate of E. fergusonii. Curr Microbiol 52(6):482–486. doi:10.1007/s00284-005-0447-6

    CAS  Google Scholar 

  • Fegan N, Higgs G, Duffy LL, Barlow RS (2009) The effects of transport and lairage on counts of Escherichia coli O157 in the feces and on the hides of individual cattle. Foodborne Pathog Dis 6(9):1113–1120. doi:10.1089/fpd.2009.0338

    Google Scholar 

  • Feng P, Lampel KA, Karch H, Whittam TS (1998) Genotypic and phenotypic changes in the emergence of Escherichia coli O157:H7. J Infect Dis 177(6):1750–1753. doi:10.1086/517438

    CAS  Google Scholar 

  • Feng PCH, Monday SR, Lacher DW, Allison L, Siitonen A, Keys C, Eklund M, Nagano H, Karch H, Keen J, Whittam TS (2007) Genetic diversity among clonal lineages within Escherichia coli O157:H7 stepwise evolutionary model. Emerg Infect Dis 13(11):1701–1706

    CAS  Google Scholar 

  • Feng PCH, Jinneman K, Scheutz F, Monday SR (2011) Specificity of PCR and serological assays in the detection of Escherichia coli Shiga toxin subtypes. Appl Environ Microbiol 77(18):6699–6702. doi:10.1128/aem.00370-11

    CAS  Google Scholar 

  • Foley SL, Simjee S, Meng JH, White DG, McDermott PF, Zhao SH (2004) Evaluation of molecular typing methods for Escherichia coli O157:H7 isolates from cattle, food, and humans. J Food Prot 67(4):651–657

    CAS  Google Scholar 

  • Franz E, van Hoek AHAM, van der Wal FJ, de Boer A, Zwartkruis-Nahuis A, van der Zwaluw K, Aarts HJM, Heuvelink AE (2012) Genetic features differentiating bovine, food, and human isolates of Shiga toxin-producing Escherichia coli O157 in the Netherlands. J Clin Microbiol 50(3):772–780. doi:10.1128/Jcm.05964-11

    CAS  Google Scholar 

  • Gannon VPJ, King RK, Kim JY, Thomas EJG (1992) Rapid and sensitive method for detection of Shiga like toxin producing Escherichia coli in ground beef using the polymerase chain reaction. Appl Environ Microbiol 58(12):3809–3815

    CAS  Google Scholar 

  • Gerner-Smidt P, Hise K, Kincaid J, Hunter S, Rolando S, Hyytia-Trees E, Ribot EM, Swaminathan B (2006) PulseNet USA: a five-year update. Foodborne Pathog Dis 3(1):9–19. doi:10.1089/fpd.2006.3.9

    CAS  Google Scholar 

  • Goering RV (2010) Pulsed field gel electrophoresis: a review of application and interpretation in the molecular epidemiology of infectious disease. Infect Genet Evol 10(7):866–875. doi:10.1016/j.meegid.2010.07.023

    CAS  Google Scholar 

  • Gordienko EN, Kazanov MD, Gelfand MS (2013) Evolution of pan-genomes of Escherichia coli, Shigella spp., and Salmonella enterica. J Bacteriol 195(12):2786–2792

    CAS  Google Scholar 

  • Hahm BK, Maldonado Y, Schreiber E, Bhunia AK, Nakatsu CH (2003) Subtyping of foodborne and environmental isolates of Escherichia coli by multiplex-PCR, rep-PCR, PFGE, ribotyping and AFLP. J Microbiol Meth 53(3):387–399. doi:10.1016/s0167-7012(02)00259-2

    CAS  Google Scholar 

  • Hall BG, Barlow M (2006) Phylogenetic analysis as a tool in molecular epidemiology of infectious diseases. Ann Epidemiol 16(3):157–169

    Google Scholar 

  • Hauser E, Mellmann A, Semmler T, Stoeber H, Wieler LH, Karch H, Kuebler N, Fruth A, Harmsen D, Weniger T, Tietze E, Schmidt H (2013) Phylogenetic and molecular analysis of foodborne Shiga toxin-producing Escherichia coli. Appl Environ Microbiol 79(8):2731–2740. doi:10.1128/aem.03552-12

    CAS  Google Scholar 

  • Healy M, Huong J, Bittner T, Lising M, Frye S, Raza S, Schrock R, Manry J, Renwick A, Nieto R, Woods C, Versalovic J, Lupski JR (2005) Microbial DNA typing by automated repetitive-sequence-based PCR. J Clin Microbiol 43(1):199–207. doi:10.1128/Jcm.43.1.199-207.2005

    CAS  Google Scholar 

  • Herold S, Karch H, Schmidt H (2004) Shiga toxin-encoding bacteriophages—genomes in motion. Int J Med Microbiol 294(2–3):115–121. doi:10.1016/j.ijmm.2004.06.023

    CAS  Google Scholar 

  • Hien BTT, Scheutz F, Cam PD, Serichantalergs O, Huong TT, Thu TM, Dalsgaard A (2008) Diarrheagenic Escherichia coli and Shigella strains isolated from children in a hospital case-control study in Hanoi, Vietnam. J Clin Microbiol 46(3):996–1004. doi:10.1128/JCM.01219-07

    CAS  Google Scholar 

  • Hiett KL, Seal BS (2009) Use of repetitive element palindromic PCR (rep-PCR) for the epidemiologic discrimination of foodborne pathogens. Methods Mol Biol (Clifton, NJ) 551:49–58. doi:10.1007/978-1-60327-999-4_5

    CAS  Google Scholar 

  • Hulton CSJ, Higgins CF, Sharp PM (1991) ERIC sequences—a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol 5(4):825–834. doi:10.1111/j.1365-2958.1991.tb00755.x

    CAS  Google Scholar 

  • Hunter SB, Vauterin P, Lambert-Fair MA, Van Duyne MS, Kubota K, Graves L, Wrigley D, Barrett T, Ribot E (2005) Establishment of a universal size standard strain for use with the PulseNet standardized pulsed-field gel electrophoresis protocols: converting the national databases to the new size standard. J Clin Microbiol 43(3):1045–1050

    CAS  Google Scholar 

  • Hyytia-Trees E, Smole SC, Fields PA, Swaminathan B, Ribot EM (2006) Second generation subtyping: a proposed PulseNet protocol for multiple-locus variable-number tandem repeat analysis of Shiga toxin-producing Escherichia coli O157 (STEC O157). Foodborne Pathog Dis 3(1):118–131. doi:10.1089/fpd.2006.3.118

    CAS  Google Scholar 

  • Hyytia-Trees EK, Cooper K, Ribot EM, Gerner-Smidt P (2007) Recent developments and future prospects in subtyping of foodborne bacterial pathogens. Future Microbiol 2(2):175–185. doi:10.2217/17460913.2.2.175

    Google Scholar 

  • Hyytia-Trees E, Lafon P, Vauterin P, Ribot EM (2010) Multilaboratory validation study of standardized multiple-locus variable-number tandem repeat analysis protocol for Shiga toxin-producing Escherichia coli O157: a novel approach to normalize fragment size data between capillary electrophoresis platforms. Foodborne Pathog Dis 7(2):129–136. doi:10.1089/fpd.2009.0371

    CAS  Google Scholar 

  • Johnson JR, O’Bryan TT (2000) Improved repetitive-element PCR fingerprinting for resolving pathogenic and nonpathogenic phylogenetic groups within Escherichia coli. Clin Diagn Lab Immun 7(2):265–273. doi:10.1128/cdli.7.2.265-273.2000

    CAS  Google Scholar 

  • Kaas RS, Friis C, Ussery DW, Aarestrup FM (2012) Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes. BMC Genomics 13:577. doi:57710.1186/1471-2164-13-577

    Google Scholar 

  • Kaper JB, Nataro JP, Mobley HLT (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2(2):123–140. doi:10.1038/nrmicro818

    CAS  Google Scholar 

  • Karama M, Gyles CL (2010) Methods for genotyping Verotoxin-producing Escherichia coli. Zoonoses Public Hlth 57(7–8):447–462. doi:10.1111/j.1863-2378.2009.01259.x

    CAS  Google Scholar 

  • Karch H, Bielaszewska M, Bitzan M, Schmidt H (1999) Epidemiology and diagnosis of Shiga toxin-producing Escherichia coli infections. Diagn Micr Infec Dis 34(3):229–243

    CAS  Google Scholar 

  • Kawamori F, Hiroi M, Harada T, Ohata K, Sugiyama K, Masuda T, Ohashi N (2008) Molecular typing of Japanese Escherichia coli O157:H7 isolates from clinical specimens by multilocus variable-number tandem repeat analysis and PFGE. J Med Microbiol 57(1):58–63. doi:10.1099/jmm.0.47213-0

    CAS  Google Scholar 

  • Keys C, Kemper S, Keim P (2005) Highly diverse variable number tandem repeat loci in the Escherichia coli O157:H7 and O55:H7 genomes for high-resolution molecular typing. J Appl Microbiol 98(4):928–940. doi:10.1111/j.1365-2672.2004.02532.x

    CAS  Google Scholar 

  • Khakhria R, Duck D, Lior H (1990) Extended phage typing scheme for Escherichia coli O157:H7. Epidemiol Infect 105(3):511–520

    CAS  Google Scholar 

  • Kim J, Nietfeldt J, Benson AK (1999) Octamer-based genome scanning distinguishes a unique subpopulation of Escherichia coli O157:H7 strains in cattle. P Natl Acad Sci U S A 96 (23):13288–13293

    CAS  Google Scholar 

  • Kim JY, Nietfeldt J, Ju JL, Wise J, Fegan N, Desmarchelier P, Benson AK (2001) Ancestral divergence, genome diversification, and phylogeographic variation in subpopulations of sorbitol-negative, beta-glucuronidase-negative enterohemorrhagic Escherichia coli O157. J Bacteriol 183(23):6885–6897

    CAS  Google Scholar 

  • Konczy P, Ziebell K, Mascarenhas M, Choi A, Michaud C, Kropinski AM, Whittam TS, Wickham M, Finlay B, Karmali MA (2008) Genomic O island 122, locus for enterocyte effacement, and the evolution of virulent verocytotoxin-producing Escherichia coli. J Bacteriol 190(17):5832–5840. doi:10.1128/jb.00480-08

    CAS  Google Scholar 

  • Kotewicz ML, Jackson SA, LeClerc JE, Cebula TA (2007) Optical maps distinguish individual strains of Escherichia coli O157:H7. Microbiology-Sgm 153:1720–1733. doi:10.1099/mic.0.2006/004507-0

    CAS  Google Scholar 

  • Lacher DW, Steinsland H, Blank TE, Donnenberg MS, Whittam TS (2007) Molecular evolution of typical enteropathogenic Escherichia coli: clonal analysis by multilocus sequence typing and virulence gene allelic profiling. J Bacteriol 189(2):342–350. doi:10.1128/jb.01472-06

    CAS  Google Scholar 

  • Lanier WA, Leeper MM, Smith KE, Tillman GE, Holt KG, Gerner-Smidt P (2009) Pulsed field gel electrophoresis subtypes of Shiga toxin-producing Escherichia coli O157 isolated from ground beef and humans, United States, 2001–2006. Foodborne Pathog Dis 6(9):1075–1082. doi:10.1089/fpd.2009.0269

    CAS  Google Scholar 

  • Leclercq A, Lambert B, Pierard D, Mahillon J (2001) Particular biochemical profiles for enterohemorrhagic Escherichia coli O157:H7 isolates on the ID 32E system. J Clin Microbiol 39(3):1161–1164. doi:10.1128/JCM.39.3.1161-1164.2001

    CAS  Google Scholar 

  • Lee K, French NP, Hara-Kudo Y, Iyoda S, Kobayashi H, Sugita-Konishi Y, Tsubone H, Kumagai S (2011) Multivariate analyses revealed distinctive features differentiating human and cattle isolates of Shiga toxin-producing Escherichia coli O157 in Japan. J Clin Microbiol 49(4):1495–1500. doi:10.1128/Jcm.02640-10

    CAS  Google Scholar 

  • Lee K, French NP, Jones G, Hara-Kudo Y, Iyoda S, Kobayashi H, Sugita-Konishi Y, Tsubone H, Kumagai S (2012) Variation in stress resistance patterns among stx genotypes and genetic lineages of Shiga toxin-producing Escherichia coli O157. Appl Environ Microbiol 78(9):3361–3368. doi:10.1128/Aem.06646-11

    CAS  Google Scholar 

  • Leung KT, Mackereth R, Tien YC, Topp E (2004) A comparison of AFLP and ERIC-PCR analyses for discriminating Escherichia coli from cattle, pig, and human sources. FEMS Microbio Ecol 47(1):111–119. doi:10.1016/s0168-9496(03)00254-x

    CAS  Google Scholar 

  • Li W, Raoult D, Fournier PE (2009) Bacterial strain typing in the genomic era. FEMS Microbiol Rev 33(5):892–916. doi:10.1111/j.1574-6976.2009.00182.x

    CAS  Google Scholar 

  • Lindstedt BA, Brandal LT, Aas L, Vardund T, Kapperud G (2007) Study of polymorphic variable-number of tandem repeats loci in the ECOR collection and in a set of pathogenic Escherichia coli and Shigella isolates for use in a genotyping assay. J Microbiol Meth 69(1):197–205. doi:10.1016/j.mimet.2007.01.001

    CAS  Google Scholar 

  • Liu K, Knabel SJ, Dudley EG (2009) rhs genes are potential markers for multilocus sequence typing of Escherichia coli O157:H7 strains. Appl Environ Microbiol 75(18):5853–5862. doi:10.1128/aem.00859-09

    CAS  Google Scholar 

  • Lobersli I, Haugum K, Lindstedt BA (2012) Rapid and high resolution genotyping of all Escherichia coli serotypes using 10 genomic repeat-containing loci. J Microbiol Meth 88(1):134–139. doi:10.1016/j.mimet.2011.11.003

    CAS  Google Scholar 

  • Maatallah M, Bakhrouf A, Habeeb MA, Turlej-Rogacka A, Iversen A, Pourcel C, Sioud O, Giske CG (2013) Four genotyping schemes for phylogenetic analysis of Pseudomonas aeruginosa: comparison of their congruence with multi-locus sequence typing. PloS One 8(12):e82069

    Google Scholar 

  • Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou JJ, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95(6):3140–3145. doi:10.1073/pnas.95.6.3140

    CAS  Google Scholar 

  • Manning SD, Motiwala AS, Springman AC, Qi W, Lacher DW, Ouellette LM, Mlaclonicky JM, Somsel P, Rudrik JT, Dietrich SE, Zhang W, Swaminathan B, Alland D, Whittam TS (2008) Variation in virulence among clades of Escherichia coli O157:H7, associated with disease outbreaks. Proc Natl Acad Sci U S A 105(12):4868–4873. doi:10.1073/pnas.0710834105

    CAS  Google Scholar 

  • Mardis ER (2011) A decade’s perspective on DNA sequencing technology. Nature 470(7333):198–203. doi:10.1038/nature09796

    CAS  Google Scholar 

  • Mathusa EC, Chen YH, Enache E, Hontz L (2010) Non-O157 Shiga toxin-producing Escherichia coli in foods. J Food Prot 73(9):1721–1736

    Google Scholar 

  • Mellor GE, Sim EM, Barlow RS, D'Astek BA, Galli L, Chinen I, Rivas M, Gobius KS (2012) Phylogenetically related Argentinean and Australian Escherichia coli O157 isolates are distinguished by virulence clades and alternative Shiga toxin 1 and 2 prophages. Appl Environ Microbiol 78(13):4724–4731. doi:10.1128/AEM.00365-12

    CAS  Google Scholar 

  • Mellor GE, Besser TE, Davis MA, Beavis B, Jung W, Smith HV, Jennison AV, Doyle CJ, Chandry PS, Gobius KS, Fegan N (2013) Multilocus genotype analysis of Escherichia coli O157 isolates from Australia and the United States provides evidence of geographic divergence. Appl Environ Microbiol 79(16):5050–5058. doi:10.1128/AEM.01525-13

    CAS  Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genetics 11(1):31–46. doi:10.1038/nrg2626

    CAS  Google Scholar 

  • Mingle LA, Garcia DL, Root TP, Halse TA, Quinlan TM, Armstrong LR, Chiefari AK, Schoonmaker-Bopp DJ, Dumas NB, Limberger RJ, Musser KA (2012) Enhanced identification and characterization of non-O157 Shiga toxin-producing Escherichia coli: a six-year study. Foodborne Pathog Dis 9(11):1028–1036. doi:10.1089/fpd.2012.1202

    CAS  Google Scholar 

  • Moon JY, Park JH, Kim YB (2005) Molecular epidemiological characteristics of virulence factors on enteroaggregative Escherichia coli. FEMS Microbiol Lett 253(2):215–220. doi:10.1016/j.femsle.2005.09.038

    CAS  Google Scholar 

  • Mora A, Blanco M, Blanco JE, Alonso MP, Dhabi G, Thomson-Carter F, Usera MA, Bartolome R, Prats G, Blanco J (2004) Phage types and genotypes of Shiga toxin-producing Escherichia coli O157:H7 isolates from humans and animals in Spain: identification and characterization of two predominating phage types (PT2 and PT8). J Clin Microbiol 42(9):4007–4015. doi:10.1128/JCM.42.9.4007-4015.2004

    CAS  Google Scholar 

  • Nadon CA, Trees E, Ng LK, Moller Nielsen E, Reimer A, Maxwell N, Kubota KA, Gerner-Smidt P (2013) Development and application of MLVA methods as a tool for inter-laboratory surveillance. Euro Surveill 18(35):20565

    CAS  Google Scholar 

  • Nataro JP, Kaper JB (1998) Diarrheagenic Escherichia coli. Clin Microbiol Rev 11(1):142–201

    CAS  Google Scholar 

  • Noller AC, McEllistrem MC, Stine OC, Morris JG, Boxrud DJ, Dixon B, Harrison LH (2003) Multilocus sequence typing reveals a lack of diversity among Escherichia coli O157:H7 isolates that are distinct by pulsed-field gel electrophoresis. J Clin Microbiol 41(2):675–679. doi:10.1128/JCM.41.2.675-679.2003

    CAS  Google Scholar 

  • Noller AC, McEllistrem MC, Shutt KA, Harrison LH (2006) Locus-specific mutational events in a multilocus variable-number tandem repeat analysis of Escherichia coli O157:H7. J Clin Microbiol 44(2):374–377. doi:10.1128/Jcm.44.2.374-377.2006

    CAS  Google Scholar 

  • O’Sullivan J, Bolton DJ, Duffy G, Baylis C, Tozzoli R, Wasteson Y, Lofdahl S (2007) Methods for detection and molecular characterisation of pathogenic Escherichia coli. In Pathogenic Escherichia coli Network. Pathogenic Escherichia coli Network Dublin, Ireland pp 1–32

    Google Scholar 

  • Ochman H, Selander RK (1984) Standard reference strains of Escherichia coli from natural populations. J Bacteriol 157(2):690–693

    CAS  Google Scholar 

  • Ogura Y, Ooka T, Asadulghani, Terajima J, Nougayrede JP, Kurokawa K, Tashiro K, Tobe T, Nakayama K, Kuhara S, Oswald E, Watanabe H, Hayashi T (2007) Extensive genomic diversity and selective conservation of virulence-determinants in enterohemorrhagic Escherichia coli strains of O157 and non-O157 serotypes. Genome Biol 8(7):R138. doi:10.1186/gb-2007-8-7-r138

    Google Scholar 

  • Pacheco ABF, Guth BEC, Soares KCC, Nishimura L, DeAlmeida DF, Ferreira LCS (1997) Random amplification of polymorphic DNA reveals serotype-specific clonal clusters among enterotoxigenic Escherichia coli strains isolated from humans. J Clin Microbiol 35(6):1521–1525

    CAS  Google Scholar 

  • Pacheco ABF, Soares KC, de Almeida DF, Viboud GI, Binsztein N, Ferreira LCS (1998) Clonal nature of enterotoxigenic Escherichia coli serotype O6:H16 revealed by randomly amplified polymorphic DNA analysis. J Clin Microbiol 36(7):2099–2102

    CAS  Google Scholar 

  • Paton AW, Paton JC (1996) Enterobacter cloacae producing a Shiga-like toxin II-related cytotoxin associated with a case of hemolytic-uremic syndrome. J Clin Microbiol 34(2):463–465

    CAS  Google Scholar 

  • Paton AW, Paton JC (1998) Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx(1), stx(2), eaeA, enterohemorrhagic E. coli hlyA, rfb(O111), and rfb(O157). J Clin Microbiol 36(2):598–602

    CAS  Google Scholar 

  • Pearce MC, Chase-Topping ME, McKendrick IJ, Mellor DJ, Locking ME, Allison L, Ternent HE, Matthews L, Knight HI, Smith AW, Synge BA, Reilly W, Low JC, Reid SWJ, Gunn GJ, Woolhouse MEJ (2009) Temporal and spatial patterns of bovine Escherichia coli O157 prevalence and comparison of temporal changes in the patterns of phage types associated with bovine shedding and human E. coli O157 cases in Scotland between 1998–2000 and 2002–2004. BMC Microbiol 9:276. doi:10.1186/1471-2180-9-276

    Google Scholar 

  • Power EGM (1996) RAPD typing in microbiology—a technical review. J Hosp Infect 34(4):247–265. doi:10.1016/S0195-6701(96)90106-1

    CAS  Google Scholar 

  • Preston MA, Johnson W, Khakhria R, Borczyk A (2000) Epidemiologic subtyping of Escherichia coli serogroup O157 strains isolated in Ontario by phage typing and pulsed-field gel electrophoresis. J Clin Microbiol 38(6):2366–2368

    CAS  Google Scholar 

  • Pupo GM, Karaolis DKR, Lan RT, Reeves PR (1997) Evolutionary relationships among pathogenic and nonpathogenic Escherichia coli strains inferred from multilocus enzyme electrophoresis and mdh sequence studies. Infect Immun 65(7):2685–2692

    CAS  Google Scholar 

  • Qi WH, Lacher DW, Bumbaugh AC, Hyma KE, Ouellette LM, Large TM, Tarr CL, Whittam TS, Soc IC (2004) EcMLST: an online database for multi locus sequence typing of pathogenic Escherichia coli. Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference.

    Google Scholar 

  • Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz F, Paxinos EE, Sebra R, Chin CS, Iliopoulos D, Klammer A, Peluso P, Lee L, Kislyuk AO, Bullard J, Kasarskis A, Wang S, Eid J, Rank D, Redman JC, Steyert SR, Frimodt-Moller J, Struve C, Petersen AM, Krogfelt KA, Nataro JP, Schadt EE, Waldor MK (2011) Origins of the Escherichia coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. New Engl J Med 365(8):709–717

    CAS  Google Scholar 

  • Regua-Mangia AH, Gonzalez AGM, Cerqueira AMF, Andrade JRC (2012) Molecular characterization of Escherichia coli O157:H7 strains isolated from different sources and geographic regions. J Vet Sci 13(2):139–144. doi:10.4142/jvs.2012.13.2.139

    Google Scholar 

  • Reid SD, Herbelin CJ, Bumbaugh AC, Selander RK, Whittam TS (2000) Parallel evolution of virulence in pathogenic Escherichia coli. Nature 406(6791):64–67

    CAS  Google Scholar 

  • Ribot EM, Fair MA, Gautom R, Cameron DN, Hunter SB, Swaminathan B, Barrett TJ (2006) Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157: H7 Salmonella, and Shigella for PulseNet. Foodborne Pathog Dis 3(1):59–67. doi:10.1089/fpd.2006.3.59

    CAS  Google Scholar 

  • Sabat AJ, Budimir A, Nashev D, Sa-Leao R, van Dijl JM, Laurent F, Grundmann H, Friedrich AW, ESGEM (2013) Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill 18(4):17–30

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA Sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467. doi:10.1073/pnas.74.12.5463

    CAS  Google Scholar 

  • Scheutz F, Teel LD, Beutin L, Pierard D, Buvens G, Karch H, Mellmann A, Caprioli A, Tozzoli R, Morabito S, Strockbine NA, Melton-Celsa AR, Sanchez M, Persson S, O’Brien AD (2012) Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing stx nomenclature. J Clin Microbiol 50(9):2951–2963. doi:10.1128/JCM.00860-12

    CAS  Google Scholar 

  • Schmidt H, Montag M, Bockemuhl J, Heesemann J, Karch H (1993) Shiga-like toxin II-related cytotoxins in Citrobacter freundii strains from humans and beef samples. Infect Immun 61(2):534–543

    CAS  Google Scholar 

  • Schumann P, Pukall R (2013) The discriminatory power of ribotyping as automatable technique for differentiation of bacteria. Syst Appl Microbiol 36(6):369–375. doi:10.1016/j.syapm.2013.05.003

    CAS  Google Scholar 

  • Scott TM, Parveen S, Portier KM, Rose JB, Tamplin ML, Farrah SR, Koo A, Lukasik J (2003) Geographical variation in ribotype profiles of Escherichia coli isolates from humans, swine, poultry, beef, and dairy cattle in Florida. Appl Environ Microbiol 69(2):1089–1092. doi:10.1128/aem.69.2.1089-1092.2003

    CAS  Google Scholar 

  • Selander RK, Caugant DA, Ochman H, Musser JM, Gilmour MN, Whittam TS (1986) Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 51(5):873–884

    CAS  Google Scholar 

  • Selander RK, Caugant DA, Whittam TS (1983) Genetic structure and variation in natural populations of Escherichia coli. In: Niedhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, 1st edn. Amercian Society for Microbiology, Washington, DC, pp 1625–1648

    Google Scholar 

  • Shabana II, Zaraket H, Suzuki H (2013) Molecular studies on diarrhea-associated Escherichia coli isolated from humans and animals in Egypt. Vet Microbiol 167(3–4):532–539. doi:10.1016/j.vetmic.2013.08.014

    CAS  Google Scholar 

  • Sharma R, Stanford K, Louie M, Munns K, John SJ, Zhang YX, Gannon V, Chui L, Read R, Topp E, McAllister T (2009) Escherichia coli O157:H7 lineages in healthy beef and dairy cattle and clinical human cases in Alberta, Canada. J Food Prot 72(3):601–607

    Google Scholar 

  • Shringi S, Schmidt C, Katherine K, Brayton KA, Hancock DD, Besser TE (2012a) Carriage of stx 2a differentiates clinical and bovine-biased strains of Escherichia coli O157. PloS One 7(12):e51572

    CAS  Google Scholar 

  • Shringi S, Schmidt C, Katherine K, Brayton KA, Hancock DD, Besser TE (2012b) Carriage of stx 2a differentiates clinical and bovine-biased strains of Escherichia coli O157. PloS One 7(12):e51572. doi:10.1371/journal.pone.0051572

    CAS  Google Scholar 

  • Souza V, Rocha M, Valera A, Eguiarte LE (1999) Genetic structure of natural populations of Escherichia coli in wild hosts on different continents. Appl Environ Microbiol 65(8):3373–3385

    CAS  Google Scholar 

  • Souza MRSM, Klassen G, De Toni F, Rigo LU, Henkes C, Pigatto CP, Dalagassa CD, Fadel-Picheth CMT (2010) Biochemical properties, enterohaemolysin production, and plasmid carriage of Shiga toxin-producing Escherichia coli strains. Mem Inst Oswaldo Cruz 105(3):318–321

    Google Scholar 

  • Sowers EG, Wells JG, Strockbine NA (1996) Evaluation of commercial latex reagents for identification of O157 and H7 antigens of Escherichia coli. J Clin Microbiol 34(5):1286–1289

    CAS  Google Scholar 

  • Stanton E, Park D, Dopfer D, Ivanek R, Kaspar CW (2014) Phylogenetic characterization of Escherichia coli O157:H7 based on IS629 distribution and Shiga toxin genotype. Microbiology-Sgm 160:502–513. doi:10.1099/Mic.0.073437-0

    CAS  Google Scholar 

  • Statens Serum Institut (2014). http://www.ssi.dk/English/SSI%20Diagnostica/Products%20from%20SSI%20Diagnostica/PCR/Ecoli%20vtx1%20and%20vtx2%20Subtyping%20PCR%20kit.aspx. Accessed 29 Sept 2014

  • Steinsland H, Lacher DW, Sommerfelt H, Whittam TS (2010) Ancestral lineages of human enterotoxigenic Escherichia coli. J Clin Microbiol 48(8):2916–2924. doi:10.1128/jcm.02432-09

    CAS  Google Scholar 

  • Stephenson J (1997) New approaches for detecting and curtailing foodborne microbial infections. JAMA 277(17):1337; 1339–1340. doi:10.1001/jama.277.17.1337

    CAS  Google Scholar 

  • Stern MJ, Ames GFL, Smith NH, Robinson EC, Higgins CF (1984) Repetitive extragenic palindromic sequences—a major component of the bacterial genome. Cell 37(3):1015–1026. doi:10.1016/0092-8674(84)90436-7

    CAS  Google Scholar 

  • Steyert SR, Sahl JW, Fraser CM, Teel LD, Scheutz F, Rasko DA (2012) Comparative genomics and stx phage characterization of LEE-negative Shiga toxin-producing Escherichia coli. Front Cell Infect Microbiol 2:133. doi:10.3389/fcimb.2012.00133

    Google Scholar 

  • Swaminathan B, Barrett TJ, Hunter SB, Tauxe RV (2001) PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerg Infect Dis 7(3):382–389. doi:10.3201/eid0703.010303

    CAS  Google Scholar 

  • Swaminathan B, Gerner-Smidt P, Ng LK, Lukinmaa S, Kam KM, Rolando S, Gutierrez EP, Binsztein N (2006) Building PulseNet International: an interconnected system of laboratory networks to facilitate timely public health recognition and response to foodborne disease outbreaks and emerging foodborne diseases. Foodborne Pathog Dis 3(1):36–50. doi:10.1089/fpd.2006.3.36

    Google Scholar 

  • Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33(9):2233–2239

    CAS  Google Scholar 

  • Urwin R, Maiden MCJ (2003) Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol 11(10):479–487. doi:10.1016/j.tim.2003.08.006

    CAS  Google Scholar 

  • van Belkum A, Scherer S, van Alphen L, Verbrugh H (1998) Short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev 62(2):275–293

    CAS  Google Scholar 

  • van Belkum A, Struelens M, de Visser A, Verbrugh H, Tibayrenc M (2001) Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology. Clin Microbiol Rev 14(3):547–560. doi:10.1128/Cmr.14.3.547-560.2001

    CAS  Google Scholar 

  • Versalovic J, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA sequences in Eubacteria and application to fingerprinting of bacterial genomes. Nucl Acids Res 19(24):6823–6831. doi:10.1093/nar/19.24.6823

    CAS  Google Scholar 

  • Versalovic J, de Bruijn FJ, Lupski JR (1998) Repetitive sequence-based PCR (rep-PCR) DNA fingerprinting of bacterial genomes. In: de Bruijn FJ, Lupski JR, Weinstock GM (eds) Bacterial Genomes: physical structure and analysis. Springer Science + Business Media, New York, pp 437–454

    Google Scholar 

  • Vidovic S, Korber DR (2006) Prevalence of Escherichia coli O157 in Saskatchewan cattle: characterization of isolates by using random amplified polymorphic DNA PCR, antibiotic resistance profiles, and pathogenicity determinants. Appl Environ Microbiol 72(6):4347–4355. doi:10.1128/aem.02791-05

    CAS  Google Scholar 

  • Vidovic S, Tsoi S, Medihala P, Liu JX, Wylie JL, Levett PN, Korber DR (2013) Molecular and antimicrobial susceptibility analyses distinguish clinical from bovine Escherichia coli O157 strains. J Clin Microbiol 51(7):2082–2088. doi:10.1128/Jcm.00307-13

    CAS  Google Scholar 

  • Wang G, Whittam TS, Berg CM, Berg DE (1993) RAPD (Arbitrary Primer) PCR is more sensitive than Multilocus Enzyme Electrophoresis for distinguishing related bacterial strains. Nucl Acids Res 21(25):5930–5933. doi:10.1093/nar/21.25.5930

    CAS  Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucl Acids Res 18(24):7213–7218

    CAS  Google Scholar 

  • Wendel AM, Johnson DH, Sharapov U, Grant J, Archer JR, Monson T, Koschmann C, Davis JP (2009) Multistate outbreak of Escherichia coli O157:H7 infection associated with consumption of packaged spinach, August-September 2006: the Wisconsin investigation. Clin Infect Dis 48(8):1079–1086. doi:10.1086/597399

    Google Scholar 

  • Whittam TS (1998) Evolution of Escherichia coli O157:H7 and other Shiga toxin-producing E. coli strains. In: Kaper JB, O’Brien AD (eds) Escherichi coli O157:H7 and other Shiga toxin-producing E. coli strains. ASM Press, Washington, DC, pp 195–212

    Google Scholar 

  • Whittam TS, Ochman H, Selander RK (1983) Multilocus genetic structure in natural populations of Escherichia coli. Proc Natl Acad Sci U S A 80(6):1751–1755. doi:10.1073/pnas.80.6.1751

    CAS  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res 18(22):6531–6535. doi:10.1093/nar/18.22.6531

    CAS  Google Scholar 

  • Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR, Maiden MC, Ochman H, Achtman M (2006) Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 60(5):1136–1151. doi:10.1111/j.1365-2958.2006.05172.x

    CAS  Google Scholar 

  • Woodford N, Turton JF, Livermore DM (2011) Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev 35(5):736–755. doi:10.1111/j.1574-6976.2011.00268.x

    CAS  Google Scholar 

  • Wu G, Carter B, Mafura M, Liebana E, Woodward MJ, Anjum MF (2008) Genetic diversity among Escherichia coli O157:H7 isolates and identification of genes linked to human infections. Infect Immun 76(2):845–856. doi:10.1128/IAI.00956-07

    CAS  Google Scholar 

  • Yang Z, Kovar J, Kim J, Nietfeldt J, Smith DR, Moxley RA, Olson ME, Fey PD, Benson AK (2004) Identification of common subpopulations of non-sorbitol-fermenting, beta-glucuronidase-negative Escherichia coli O157:H7 from bovine production environments and human clinical samples. Appl Environ Microbiol 70(11):6846–6854. doi:10.1128/AEM.70.11.6846-6854.2004

    CAS  Google Scholar 

  • Yokoyama E, Hashimoto R, Etoh Y, Ichihara S, Horikawa K, Uchimura M (2011) Biased distribution of IS629 among strains in different lineages of enterohemorrhagic Escherichia coli serovar O157. Infect Genet Evol 11(1):78–82. doi:10.1016/j.meegid.2010.10.007

    CAS  Google Scholar 

  • Zhang YX, Laing C, Steele M, Ziebell K, Johnson R, Benson AK, Taboada E, Gannon VPJ (2007) Genome evolution in major Escherichia coli O157:H7 lineages. BMC Genomics 8:121. doi:10.1186/1471-2164-8-121

    Google Scholar 

  • Zhang YX, Laing C, Zhang ZZ, Hallewell J, You CP, Ziebell K, Johnson RP, Kropinski AM, Thomas JE, Karmali M, Gannon VPJ (2010) Lineage and host source are both correlated with levels of Shiga toxin 2 production by Escherichia coli O157:H7 strains. Appl Environ Microbiol 76(2):474–482. doi:10.1128/AEM.01288-09

    CAS  Google Scholar 

  • Zhao SH, Mitchell SE, Meng JH, Kresovich S, Doyle MP, Dean RE, Casa AM, Weller JW (2000) Genomic typing of Escherichia coli O157:H7 by semi-automated fluorescent AFLP analysis. Microbes Infect 2(2):107–113. doi:10.1016/s1286-4579(00)00278-1

    CAS  Google Scholar 

  • Ziebell K, Steele M, Zhang Y, Benson A, Taboada EN, Laing C, McEwen S, Ciebin B, Johnson R, Gannon V (2008a) Genotypic characterization and prevalence of virulence factors among Canadian Escherichia coli O157:H7 strains. Appl Environ Microbiol 74(14):4314–4323. doi:10.1128/Aem.02821-07

    CAS  Google Scholar 

  • Ziebell M, Konczy P, Yong I, Frost S, Mascarenhas M, Kropinski AM, Whittam TS, Read SC, Karmali MA (2008b) Applicability of phylogenetic methods for characterizing the public health significance of verocytotoxin-producing Escherichia coli strains. Appl Environ Microbiol 74(5):1671–1675. doi:10.1128/aem.01619-07

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Rivas .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Authors

About this chapter

Cite this chapter

Rivas, L., Mellor, G., Gobius, K., Fegan, N. (2015). Typing and Subtyping Methods for Pathogenic Escherichia coli . In: Detection and Typing Strategies for Pathogenic Escherichia coli. SpringerBriefs in Food, Health, and Nutrition. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2346-5_3

Download citation

Publish with us

Policies and ethics