Skip to main content

Insights into the Genetics of Clubfoot

  • Chapter
  • First Online:
Molecular Genetics of Pediatric Orthopaedic Disorders

Abstract

Clubfoot, a common complex birth defect, affects 135,000 newborns each year worldwide. While tremendous strides have been made in treatment with the Ponsetti nonsurgical method, the post-treatment foot generally remains small with hypoplastic calf musculature. Even though clubfoot has been studied for more than 100 years, only a few contributing factors have been identified. Prenatal tobacco smoke exposure is the only consistently associated environmental factor and confers an increased risk in a dose dependent manner. Moreover, maternal smoking and a family history of clubfoot increases the risk 20-fold confirming that genetic factors play a role. Genetic studies have shown that variation in TBX4 and PITX1 cause syndromic forms of clubfoot; however, there is no evidence that variation in these genes contribute to nonsyndromic clubfoot. Recent work suggests that variants in the regulatory regions of muscle-specific genes play a role by subtly affecting gene expression and it is hypothesized that variation in the expression of multiple genes is necessary for clubfoot development. This mechanism is consistent with the multifactorial model first proposed for clubfoot over 50 years ago. Confirmation of this work should enable identification of unique gene risk signatures that will aid in genetic counseling. Next generation approaches should speed gene identification in clubfoot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bohm M. Embryologic origin of clubfoot. J Bone Joint Surg. 1929;11:229–59.

    Google Scholar 

  2. Hulme A. The management of congenital talipes equinovarus. Early Hum Dev. 2005;81:797–802.

    Article  PubMed  Google Scholar 

  3. Laaveg SJ, Ponseti IV. Long-term results of treatment of congenital club foot. J Bone Joint Surg Am. 1980;62:23–31.

    CAS  PubMed  Google Scholar 

  4. Ponseti IV. Treatment of congenital club foot. J Bone Joint Surg Am. 1992;74:448–54.

    CAS  PubMed  Google Scholar 

  5. Fromental-Ramain C, et al. Hoxa-13 and Hoxd-13 play a crucial role in the patterning of the limb autopod. Development. 1996;122:2997–3011.

    CAS  PubMed  Google Scholar 

  6. Gurnett CA, Boehm S, Connolly A, Reimschisel T, Dobbs MB. Impact of congenital talipes equinovarus etiology on treatment outcomes. Dev Med Child Neurol. 2008;50:498–502.

    Article  PubMed  Google Scholar 

  7. Gurnett MBDaCA. Genetics of clubfoot. J Pediatr Orthop B. 2011;21:7–9.

    Google Scholar 

  8. Brewer C, Holloway S, Zawalnyski P, Schinzel A, FitzPatrick D. A chromosomal deletion map of human malformations. Am J Hum Genet. 1998;63:1153–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Brewer C, Holloway S, Zawalnyski P, Schinzel A, FitzPatrick D. A chromosomal duplication map of malformations: regions of suspected haplo- and triplolethality-and tolerance of segmental aneuploidy-in humans. Am J Hum Genet. 1999;64:1702–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Parker SE, et al. Multistate study of the epidemiology of clubfoot. Birth Defects Res A Clin Mol Teratol. 2009;85:897–904.

    Article  CAS  PubMed  Google Scholar 

  11. Pirani S, et al. Towards effective Ponseti clubfoot care: the Uganda sustainable clubfoot care project. Clin Orthop Relat Res. 2009;467:1154–63.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Wallander H, Hovelius L, Michaelsson K. Incidence of congenital clubfoot in Sweden. Acta Orthop. 2006;77:847–52.

    Article  PubMed  Google Scholar 

  13. Culverwell AD, Tapping CR. Congenital talipes equinovarus in Papua New Guinea: a difficult yet potentially manageable situation. Int Orthop. 2009;33:521–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Mkandawire NC, Kaunda E. Incidence and patterns of congenital talipes equinovarus (clubfoot) deformity at Queen Elizabeth Central Hospital, Banter, Malawi. East and Cent Afr J Surg. 2004;9:28–31.

    Google Scholar 

  15. Yamamoto H. A clinical, genetic and epidemiologic study of congenital club foot. Jinrui Idengaku Zasshi. 1979;24:37–44.

    Article  CAS  PubMed  Google Scholar 

  16. Mittal RL, Sekhon AS, Singh G, Thakral H. The prevalence of congenital orthopaedic anomalies in a rural community. Int Orthop. 1993;17:11–2.

    Article  CAS  PubMed  Google Scholar 

  17. Ching GH, Chung CS, Nemechek RW. Genetic and epidemiological studies of clubfoot in Hawaii: ascertainment and incidence. Am J Hum Genet. 1969;21:566–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Krogsgaard MR, et al. Increasing incidence of club foot with higher population density: incidence and geographical variation in Denmark over a 16-year period-an epidemiological study of 936,525 births. Acta Orthop. 2006;77:839–46.

    Article  PubMed  Google Scholar 

  19. Paton RW, Fox AE, Foster A, Fehily M. Incidence and aetiology of talipes equino-varus with recent population changes. Acta Orthop Belg. 2010;76:86–9.

    PubMed  Google Scholar 

  20. Carey M, Bower C, Mylvaganam A, Rouse I. Talipes equinovarus in Western Australia. Paediatr Perinat Epidemiol. 2003;17:187–94.

    Article  PubMed  Google Scholar 

  21. Chung CS, Nemechek RW, Larsen IJ, Ching GH. Genetic and epidemiological studies of clubfoot in Hawaii. General and medical considerations. Hum Hered. 1969;19:321–42.

    Article  CAS  PubMed  Google Scholar 

  22. Lochmiller C, Johnston D, Scott A, Risman M, Hecht JT. Genetic epidemiology study of idiopathic talipes equinovarus. Am J Med Genet. 1998;79:90–6.

    Article  CAS  PubMed  Google Scholar 

  23. Beals RK. Club foot in the Maori: a genetic study of 50 kindreds. N Z Med J. 1978;88:144–6.

    CAS  PubMed  Google Scholar 

  24. Moorthi RN, et al. Idiopathic talipes equinovarus (ITEV) (clubfeet) in Texas. Am J Med Genet A. 2005;132:376–80.

    Article  Google Scholar 

  25. Cardy AH, Sharp L, Torrance N, Hennekam RC, Miedzybrodzka Z. Is there evidence for aetiologically distinct subgroups of idiopathic congenital talipes equinovarus? A case-only study and pedigree analysis. PLoS One. 2011;6:e17895.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Dietz F. The genetics of idiopathic clubfoot. Clin Orthop Relat Res. 2002;401: 39–48.

    Google Scholar 

  27. Dobbs MB, Gurnett CA. Genetics of clubfoot. J Pediatr Orthop B. 2012;21:7–9.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Barker SL, Macnicol MF. Seasonal distribution of idiopathic congenital talipes equinovarus in Scotland. J Pediatr Orthop B. 2002;11:129–33.

    PubMed  Google Scholar 

  29. Loder RT, et al. Lack of seasonal variation in idiopathic talipes equinovarus. J Bone Joint Surg Am. 2006;88:496–502.

    Article  PubMed  Google Scholar 

  30. Pryor GA, Villar RN, Ronen A, Scott PM. Seasonal variation in the incidence of congenital talipes equinovarus. J Bone Joint Surg Br. 1991;73:632–4.

    CAS  PubMed  Google Scholar 

  31. Pavone V, et al. Congenital talipes equinovarus: an epidemiological study in Sicily. Acta Orthop. 2012;83:294–8.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Heydanus R, Ledward RS. Failed mifepristone termination of pregnancy and talipes equinovares: coincidence? J Obstet Gynaecol. 1995;15:211.

    Google Scholar 

  33. Czeizel AE, Puho E, Sorensen HT, Olsen J. Possible association between different congenital abnormalities and use of different sulfonamides during pregnancy. Congenit Anom (Kyoto). 2004;44:79–86.

    Article  CAS  Google Scholar 

  34. Ulrich M, et al. The influence of folic acid supplement on the outcome of pregnancies in the county of Funen in Denmark. PartIII. Congenital anomalies. An observational study. Eur J Obstet Gynecol Reprod Biol. 1999;87:115–8; (discussion 103–4).

    Article  CAS  PubMed  Google Scholar 

  35. Hackshaw A, Rodeck C, Boniface S. Maternal smoking in pregnancy and birth defects: a systematic review based on 173,687 malformed cases and 11.7 million controls. Hum Reprod Update. 2011;17:589–604.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Niemann S, et al. Homozygous WNT3 mutation causes tetra-amelia in a large consanguineous family. Am J Hum Genet. 2004;74:558–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Honein MA, Paulozzi LJ, Moore CA. Family history, maternal smoking, and clubfoot: an indication of a gene-environment interaction. Am J Epidemiol. 2000;152:658–65.

    Article  CAS  PubMed  Google Scholar 

  38. Skelly AC, Holt VL, Mosca VS, Alderman BW. Talipes equinovarus and maternal smoking: a population-based case-control study in Washington state. Teratology. 2002;66:91–100.

    Article  CAS  PubMed  Google Scholar 

  39. Dickinson KC, Meyer RE, Kotch J. Maternal smoking and the risk for clubfoot in infants. Birth Defects Res A Clin Mol Teratol. 2008;82:86–91.

    Article  CAS  PubMed  Google Scholar 

  40. Idelberger K. Die Ergebnisse der Zwillingsforschung beim angeborenen Klumpfuss. Verh Deutsch Orthopdd Ges. 1939;33:272–6.

    Google Scholar 

  41. Barker S, Chesney D, Miedzybrodzka Z, Maffulli N. Genetics and epidemiology of idiopathic congenital talipes equinovarus. J Pediatr Orthop. 2003;23:265–72.

    PubMed  Google Scholar 

  42. Strach E. Club-foot through the centuries. Prog Pediatr Surg. 1986;20:215–237.

    Article  CAS  PubMed  Google Scholar 

  43. Yang HY, Chung CS, Nemechek RW. A genetic analysis of clubfoot in Hawaii. Genet Epidemiol. 1987;4:299–306.

    Article  CAS  PubMed  Google Scholar 

  44. Wynne-Davies R. Family studies and the cause of congenital club foot. Talipes equinovarus, talipes calcaneo-valgus and metatarsus varus. J Bone Joint Surg Br. 1964;46:445–63.

    CAS  PubMed  Google Scholar 

  45. Wynne-Davies R. Family studies and aetiology of club foot. J Med Genet. 1965;2:227–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. de Andrade M, et al. Segregation analysis of idiopathic talipes equinovarus in a Texan population. Am J Med Genet. 1998;79:97–102.

    Article  CAS  PubMed  Google Scholar 

  47. Kruse LM, Dobbs MB, Gurnett CA. Polygenic threshold model with sex dimorphism in clubfoot inheritance: the Carter effect. J Bone Joint Surg Am. 2008;90:2688–94.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Kitamura M, Kasai A. Cigarette smoke as a trigger for the dioxin receptor-mediated signaling pathway. Cancer Lett. 2007;252:184–94.

    Article  CAS  PubMed  Google Scholar 

  49. Czekaj P, Wiaderkiewicz A, Florek E, Wiaderkiewicz R. Tobacco smoke-dependent changes in cytochrome P450 1A1, 1A2, and 2E1 protein expressions in fetuses, newborns, pregnant rats, and human placenta. Arch Toxicol. 2005;79:13–24.

    Article  CAS  PubMed  Google Scholar 

  50. Hecht JT, et al. NAT2 variation and idiopathic talipes equinovarus (clubfoot). Am J Med Genet A. 2007;143A:2285–91.

    Article  CAS  PubMed  Google Scholar 

  51. Sommer A, et al. Smoking, the xenobiotic pathway, and clubfoot. Birth Defects Res A Clin Mol Teratol. 2011;91:20–8.

    Article  CAS  PubMed  Google Scholar 

  52. Zuzarte-Luis V, Hurle JM. Programmed cell death in the developing limb. Int J Dev Biol. 2002;46:871–6.

    CAS  PubMed  Google Scholar 

  53. Capdevila J, Izpisua Belmonte JC. Patterning mechanisms controlling vertebrate limb development. Annu Rev Cell Dev Biol. 2001;17:87–132.

    Article  CAS  PubMed  Google Scholar 

  54. Duboc V, Logan MP. Building limb morphology through integration of signalling modules. Curr Opin Genet Dev. 2009;19:497–503.

    Article  CAS  PubMed  Google Scholar 

  55. Logan M. Finger or toe: the molecular basis of limb identity. Development. 2003;130:6401–10.

    Article  CAS  PubMed  Google Scholar 

  56. Yang Y. Growth and patterning in the limb: signaling gradients make the decision. Sci Signal. 2009;2:pe3.

    Article  PubMed  Google Scholar 

  57. Duboc V, Logan MP. Regulation of limb bud initiation and limb-type morphology. Dev Dyn. 2011;240:1017–27.

    Article  CAS  PubMed  Google Scholar 

  58. Bareither D. Prenatal development of the foot and ankle. J Am Podiatr Med Assoc. 1995;85:753–64.

    Article  CAS  PubMed  Google Scholar 

  59. Gurnett CA, et al. Asymmetric lower-limb malformations in individuals with homeobox PITX1 gene mutation. Am J Hum Genet. 2008;83:616–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Klopocki E, et al. Deletions in PITX1 cause a spectrum of lower-limb malformations including mirror-image polydactyly. Eur J Hum Genet. 2012;20:705–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Alvarado DM, et al. Pitx1 haploinsufficiency causes clubfoot in humans and a clubfoot-like phenotype in mice. Hum Mol Genet. 2011;20:3943–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Alvarado DM, et al. Familial isolated clubfoot is associated with recurrent chromosome 17q23.1q23.2 microduplications containing TBX4. Am J Hum Genet. 2010;87:154–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Logan M, Tabin CJ. Role of Pitx1 upstream of Tbx4 in specification of hindlimb identity. Science. 1999;283:1736–9.

    Article  CAS  PubMed  Google Scholar 

  64. Rodriguez-Esteban C, et al. The T-box genes Tbx4 and Tbx5 regulate limb outgrowth and identity. Nature. 1999;398:814–8.

    Article  CAS  PubMed  Google Scholar 

  65. Hasson P, et al. Tbx4 and tbx5 acting in connective tissue are required for limb muscle and tendon patterning. Dev Cell. 2010;18:148–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Lu W, et al. Studies of TBX4 and chromosome 17q23.1q23.2: an uncommon cause of nonsyndromic clubfoot. Am J Med Genet A. 2012;158A:1620–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Rahimov F, et al. Disruption of an AP-2alpha binding site in an IRF6 enhancer is associated with cleft lip. Nat Genet. 2008;40:1341–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Bamshad M, Jorde LB, Carey JC. A revised and extended classification of the distal arthrogryposes. Am J Med Genet. 1996;65:277–81.

    Article  CAS  PubMed  Google Scholar 

  69. Gurnett CA, Alaee F, Desruisseau D, Boehm S, Dobbs MB. Skeletal muscle contractile gene (TNNT3, MYH3, TPM2) mutations not found in vertical talus or clubfoot. Clin Orthop Relat Res. 2009;467(5):1195–200.

    Article  Google Scholar 

  70. Shyy W, Wang K, Sheffield VC, Morcuende JA. Evaluation of embryonic and perinatal myosin gene mutations and the etiology of congenital idiopathic clubfoot. J Pediatr Orthop. 2010;30:231–4.

    Article  PubMed  Google Scholar 

  71. Weymouth KS, et al. Variants in genes that encode muscle contractile proteins influence risk for isolated clubfoot. Am J Med Genet A. 2011;155A:2170–9.

    Article  PubMed  Google Scholar 

  72. Weymouth KS, Patel CV, Savill SA, Hecht JT. Variation in HOXA9, TPM1 and TPM2 contributes to clubfoot. Clin Orthop Relat Res. 2013 (in preparation).

    Google Scholar 

  73. Heck AL, Bray MS, Scott A, Blanton SH, Hecht JT. Variation in CASP10 gene is associated with idiopathic talipes equinovarus. J Pediatr Orthop. 2005;25:598–602.

    Article  PubMed  Google Scholar 

  74. Ester AR, et al. Altered transmission of HOX and apoptotic SNPs identify a potential common pathway for clubfoot. Am J Med Genet A. 2009;149A:2745–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Ester AR, Tyerman G, Wise CA, Blanton SH, Hecht JT. Apoptotic gene analysis in idiopathic talipes equinovarus (clubfoot). Clin Orthop Relat Res. 2007;462:32–7.

    Article  PubMed  Google Scholar 

  76. McGinnis W, Krumlauf R. Homeobox genes and axial patterning. Cell. 1992;68:283–302.

    Article  CAS  PubMed  Google Scholar 

  77. Mark M, Rijli FM, Chambon P. Homeobox genes in embryogenesis and pathogenesis. Pediatr Res. 1997;42:421–9.

    Article  CAS  PubMed  Google Scholar 

  78. Houghton L, Rosenthal N. Regulation of a muscle-specific transgene by persistent expression of Hox genes in postnatal murine limb muscle. Dev Dyn. 1999;216:385–97.

    Article  CAS  PubMed  Google Scholar 

  79. Dobbs MB, et al. HOXD10 M319K mutation in a family with isolated congenital vertical talus. J Orthop Res. 2006;24:448–53.

    Article  CAS  PubMed  Google Scholar 

  80. Shrimpton AE, et al. A HOX gene mutation in a family with isolated congenital vertical talus and Charcot–Marie-Tooth disease. Am J Hum Genet. 2004;75:92–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Rebbeck TR, Dietz FR, Murray JC, Buetow KH. A single-gene explanation for the probability of having idiopathic talipes equinovarus. Am J Hum Genet. 1993;53:1051–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Wang JH, Palmer RM, Chung CS. The role of major gene in clubfoot. Am J Hum Genet. 1988;42:772–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Bonafe L, et al. DTDST mutations are not a frequent cause of idiopathic talipes equinovarus (club foot). J Med Genet. 2002;39:e20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Hilary Page (www.hilarypage.com) for the depiction of clubfeet in Fig. 6.1. Parts of the work described in this chapter were supported by grants from NIH (R01-HD043342) and Shriners Hospital for Children.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katelyn S. Weymouth PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weymouth, K., Blanton, S., Hecht, J. (2015). Insights into the Genetics of Clubfoot. In: Wise, C., Rios, J. (eds) Molecular Genetics of Pediatric Orthopaedic Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2169-0_6

Download citation

Publish with us

Policies and ethics