Skip to main content

Abstract

Receptor tyrosine kinases (RTKs) hold a key position in the complex network of intercellular communication of multicellular organisms. The origins of the 58 RTKs in the human genome can therefore be traced back to the basis of metazoans. This chapter provides a reconstruction of the evolutionary history of the mammalian RTK repertoire and the interrelationships of RTK families and their individual members. Early on in metazoan evolution, a basic set of nine RTKs was already present, represented in extant invertebrates by one member of the EGF receptor, insulin receptor, FGF receptor, and EPH receptor families, one RTK of the PDGF/VEGF receptor superfamily, DDR and ROR families, and a MuSK- and PTK7-type receptor. This set of basic receptors was then expanded to 16 RTKs in the ancestor of the chordates. The full complement of the human RTK families is the result of two whole genome duplications that occurred in early vertebrate evolution. With a third whole genome duplication, fish have even more RTKs. The gain in RTK genes in the course of evolution mirrors the increasing complexity of cell types, cell functions, and intracrine, autocrine, juxtacrine, paracrine, and endocrine cellular interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. King N, Carroll SB. A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. Proc Natl Acad Sci U S A. 2001;98(26):15032–7 [Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Skorokhod A, Gamulin V, Gundacker D, Kavsan V, Muller IM, Muller WE. Origin of insulin receptor-like tyrosine kinases in marine sponges. Biol Bull. 1999;197(2):198–206 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  3. Reddy PC, Bidaye SS, Ghaskadbi S. Genome-wide screening reveals the emergence and divergence of RTK homologues in basal Metazoan Hydra magnipapillata. J Biosci. 2011;36(2):289–96 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  4. Müller WE, Skorokhod A, Müller IM. Receptor tyrosine kinase, an autapomorphic character of metazoa: identification in marine sponges. Acta Biol Hung. 1999;50(4):395–411 [Research Support, Non-U.S. Gov’t Review].

    PubMed  Google Scholar 

  5. Müller WE, Kruse M, Blumbach B, Skorokhod A, Muller IM. Gene structure and function of tyrosine kinases in the marine sponge Geodia cydonium: autapomorphic characters in Metazoa. Gene. 1999;238(1):179–93 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  6. Amit I, Wides R, Yarden Y. Evolvable signaling networks of receptor tyrosine kinases: relevance of robustness to malignancy and to cancer therapy. Mol Syst Biol. 2007;3:151 [Research Support, Non-U.S. Gov’t Review].

    Article  PubMed Central  PubMed  Google Scholar 

  7. Ohno S. Evolution by gene duplication. New York, NY: Springer; 1970.

    Book  Google Scholar 

  8. Van de Peer Y, Maere S, Meyer A. The evolutionary significance of ancient genome duplications. Nat Rev Genet. 2009;10(10):725–32 [Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  Google Scholar 

  9. Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res. 2007;17(9):1254–65 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature. 2004;431(7011):946–57 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  11. Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, et al. The medaka draft genome and insights into vertebrate genome evolution. Nature. 2007;447(7145):714–9 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  12. Muffato M, Crollius RH. Paleogenomics in vertebrates, or the recovery of lost genomes from the mist of time. Bioessays. 2008;30(2):122–34.

    Article  PubMed  Google Scholar 

  13. Livneh E, Glazer L, Segal D, Schlessinger J, Shilo BZ. The Drosophila EGF receptor gene homolog: conservation of both hormone binding and kinase domains. Cell. 1985;40(3):599–607 [Comparative Study, Research Support, Non-U.S. Gov’t, Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  14. Aroian RV, Koga M, Mendel JE, Ohshima Y, Sternberg PW. The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily. Nature. 1990;348(6303):693–9 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  15. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141(7):1117–34 [Research Support, N.I.H., Extramural Review].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Volff JN, Schartl M. Evolution of signal transduction by gene and genome duplication in fish. J Struct Funct Genomics. 2003;3(1–4):139–50.

    Article  CAS  PubMed  Google Scholar 

  17. Gomez A, Volff JN, Hornung U, Schartl M, Wellbrock C. Identification of a second egfr gene in Xiphophorus uncovers an expansion of the epidermal growth factor receptor family in fish. Mol Biol Evol. 2004;21(2):266–75.

    Article  CAS  PubMed  Google Scholar 

  18. Gomez A, Wellbrock C, Gutbrod H, Dimitrijevic N, Schartl M. Ligand-independent dimerization and activation of the oncogenic Xmrk receptor by two mutations in the extracellular domain. J Biol Chem. 2001;276(5):3333–40.

    Article  CAS  PubMed  Google Scholar 

  19. Meierjohann S, Schartl M. From Mendelian to molecular genetics: the Xiphophorus melanoma model. Trends Genet. 2006;22(12):654–61.

    Article  CAS  PubMed  Google Scholar 

  20. Broughton S, Partridge L. Insulin/IGF-like signalling, the central nervous system and aging. Biochem J. 2009;418(1):1–12 [Research Support, N.I.H., Extramural Review].

    Article  CAS  PubMed  Google Scholar 

  21. Klambt C, Glazer L, Shilo BZ. Breathless, a Drosophila FGF receptor homolog, is essential for migration of tracheal and specific midline glial cells. Genes Dev. 1992;6(9):1668–78 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  22. Beiman M, Shilo BZ, Volk T. Heartless, a Drosophila FGF receptor homolog, is essential for cell migration and establishment of several mesodermal lineages. Genes Dev. 1996;10(23):2993–3002 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  23. Grassot J, Gouy M, Perriere G, Mouchiroud G. Origin and molecular evolution of receptor tyrosine kinases with immunoglobulin-like domains. Mol Biol Evol. 2006;23(6):1232–41 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  24. Kondo K, Hiratsuka S, Subbalakshmi E, Matsushime H, Shibuya M. Genomic organization of the flt-1 gene encoding for vascular endothelial growth factor (VEGF) receptor-1 suggests an intimate evolutionary relationship between the 7-Ig and the 5-Ig tyrosine kinase receptors. Gene. 1998;208(2):297–305 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  25. Hallböök F, Wilson K, Thorndyke M, Olinski RP. Formation and evolution of the chordate neurotrophin and Trk receptor genes. Brain Behav Evol. 2006;68(3):133–44 [Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  Google Scholar 

  26. Benito-Gutierrez E, Nake C, Llovera M, Comella JX, Garcia-Fernandez J. The single AmphiTrk receptor highlights increased complexity of neurotrophin signalling in vertebrates and suggests an early role in developing sensory neuroepidermal cells. Development. 2005;132(9):2191–202 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  27. Lapraz F, Röttinger E, Duboc V, Range R, Duloquin L, Walton K, et al. RTK and TGF-beta signaling pathways genes in the sea urchin genome. Dev Biol. 2006;300(1):132–52 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  28. Beck G, Munno DW, Levy Z, Dissel HM, Van-Minnen J, Syed NI, et al. Neurotrophic activities of trk receptors conserved over 600 million years of evolution. J Neurobiol. 2004;60(1):12–20 [Comparative Study Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  29. Suga H, Hoshiyama D, Kuraku S, Katoh K, Kubokawa K, Miyata T. Protein tyrosine kinase cDNAs from amphioxus, hagfish, and lamprey: isoform duplications around the divergence of cyclostomes and gnathostomes. J Mol Evol. 1999;49(5):601–8 [Comparative Study Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  30. Mellott DO, Burke RD. The molecular phylogeny of eph receptors and ephrin ligands. BMC Cell Biol. 2008;9:27 [Research Support, Non-U.S. Gov’t].

    Article  PubMed Central  PubMed  Google Scholar 

  31. Laisney JA, Braasch I, Walter RB, Meierjohann S, Schartl M. Lineage-specific co-evolution of the Egf receptor/ligand signaling system. BMC Evol Biol. 2010;10:27.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Stein RA, Staros JV. Insights into the evolution of the ErbB receptor family and their ligands from sequence analysis. BMC Evol Biol. 2006;6:79 [Research Support, N.I.H., Extramural].

    Article  PubMed Central  PubMed  Google Scholar 

  33. Schneider MR, Wolf E. The epidermal growth factor receptor ligands at a glance. J Cell Physiol. 2009;218(3):460–6 [Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  Google Scholar 

  34. Itoh N, Ornitz DM. Functional evolutionary history of the mouse Fgf gene family. Dev Dyn. 2008;237(1):18–27 [Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov’t, Review].

    Article  CAS  PubMed  Google Scholar 

  35. Goldfarb M, Schoorlemmer J, Williams A, Diwakar S, Wang Q, Huang X, et al. Fibroblast growth factor homologous factors control neuronal excitability through modulation of voltage-gated sodium channels. Neuron. 2007;55(3):449–63 [In Vitro Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Schoorlemmer J, Goldfarb M. Fibroblast growth factor homologous factors and the islet brain-2 scaffold protein regulate activation of a stress-activated protein kinase. J Biol Chem. 2002;277(51):49111–9.

    Article  CAS  PubMed  Google Scholar 

  37. Bertrand S, Camasses A, Somorjai I, Belgacem MR, Chabrol O, Escande ML, et al. Amphioxus FGF signaling predicts the acquisition of vertebrate morphological traits. Proc Natl Acad Sci U S A. 2011;108(22):9160–5 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Satou Y, Imai KS, Satoh N. Fgf genes in the basal chordate Ciona intestinalis. Dev Genes Evol. 2002;212(9):432–8 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  39. Li X, Eriksson U. Novel PDGF family members: PDGF-C and PDGF-D. Cytokine Growth Factor Rev. 2003;14(2):91–8 [Review].

    Article  CAS  PubMed  Google Scholar 

  40. Holmes DI, Zachary I. The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol. 2005;6(2):209 [Research Support, Non-U.S. Gov’t Review].

    Article  PubMed Central  PubMed  Google Scholar 

  41. Huminiecki L, Heldin CH. 2R and remodeling of vertebrate signal transduction engine. BMC Biol. 2010;8:146 [Research Support, Non-U.S. Gov’t].

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support by the Deutsche Forschungsgemeinschaft (DFG) to MS and Agence Nationale de la Recherche (ANR) to JNV. Due to restrictions in space and in light of the plethora of publications on RTKs, only a selection of references could be considered. We apologize to all whose work has not been cited or discussed and declare that such omissions do not reflect any validation of the relevance and quality of the research reported there.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Schartl Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schartl, M., Volff, JN., Brunet, F. (2015). Evolution of Receptor Tyrosine Kinases. In: Wheeler, D., Yarden, Y. (eds) Receptor Tyrosine Kinases: Structure, Functions and Role in Human Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2053-2_2

Download citation

Publish with us

Policies and ethics