Skip to main content

Pediatric High-Grade Gliomas and DIPG

  • Chapter
  • First Online:
Molecular Pathology of Nervous System Tumors

Part of the book series: Molecular Pathology Library ((MPLB,volume 8))

Abstract

Recent genomic studies of pediatric high-grade gliomas (pHGGs) have unraveled important new clues into the pathogenesis of these tumors. One novel insight that was previously unappreciated is the role of epigenetic alterations in pediatric gliomagenesis. This was realized when mutations in histone 3.3/3.1 (H3.3/H3.1) were identified in these tumors. A related concept is that certain genetic alterations only occur in a region-specific manner within the central nervous system. As an example, K27M H3.3/H3.1 mutations are present in high-grade gliomas that arise along the midline of the central nervous system while G34R and G34V H3.3 mutations are present in high-grade gliomas that arise in the cerebral cortex. In addition, the realization that gliomas that harbor histone mutations are mutually exclusive of isocitrate dehydrogenase (IDH) mutant gliomas, which primarily arise in adults, has reinforced the notion that pediatric gliomas and adult gliomas are biologically disparate diseases. Incorporating this new data within the framework of our existing knowledge of the genetic alterations of pHGGs gives new hope that we will successfully identify effective therapies for these tumors in the upcoming decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fangusaro J. Pediatric high grade glioma: a review and update on tumor clinical characteristics and biology. Front Oncol. 2012;2:105.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Finlay JL, et al. Randomized phase III trial in childhood high-grade astrocytoma comparing vincristine, lomustine, and prednisone with the eight-drugs-in-1-day regimen. Childrens Cancer Group. J Clin Oncol. 1995;13(1):112–23.

    CAS  PubMed  Google Scholar 

  3. Schwartzentruber J, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482(7384):226–31.

    Article  CAS  PubMed  Google Scholar 

  4. Wu G, et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet. 2012;44(3):251–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Maze I, Noh KM, Allis CD. Histone regulation in the CNS: basic principles of epigenetic plasticity. Neuropsychopharmacology. 2013;38(1):3–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Lewis PW, et al. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci U S A. 2010;107(32):14075–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Heaphy CM, et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science. 2011;333(6041):425.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Nguyen DN, et al. Molecular and morphologic correlates of the alternative lengthening of telomeres phenotype in high-grade astrocytomas. Brain Pathol. 2013;23(3):237–43.

    Article  PubMed  Google Scholar 

  9. Sturm D, et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell. 2012;22(4):425–37.

    Article  CAS  PubMed  Google Scholar 

  10. Lewis PW, et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science. 2013;340(6134):857–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Fontebasso AM, et al. Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathol. 2013;125(5):659–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Yan H, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360(8):765–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Pollack IF, et al. IDH1 mutations are common in malignant gliomas arising in adolescents: a report from the Children’s Oncology Group. Childs Nerv Syst. 2011;27(1):87–94.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Losman JA, Kaelin Jr WG. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 2013;27(8):836–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Paugh BS, et al. Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol. 2010;28(18):3061–8.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Schiffman JD, et al. Oncogenic BRAF mutation with CDKN2A inactivation is characteristic of a subset of pediatric malignant astrocytomas. Cancer Res. 2010;70(2):512–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Barrow J, et al. Homozygous loss of ADAM3A revealed by genome-wide analysis of pediatric high-grade glioma and diffuse intrinsic pontine gliomas. Neuro Oncol. 2011;13(2):212–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Bax DA, et al. A distinct spectrum of copy number aberrations in pediatric high-grade gliomas. Clin Cancer Res. 2010;16(13):3368–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Warren KE, et al. Genomic aberrations in pediatric diffuse intrinsic pontine gliomas. Neuro Oncol. 2012;14(3):326–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Zarghooni M, et al. Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor alpha and poly (ADP-ribose) polymerase as potential therapeutic targets. J Clin Oncol. 2010;28(8):1337–44.

    Article  CAS  PubMed  Google Scholar 

  21. Wong KK, et al. Genome-wide allelic imbalance analysis of pediatric gliomas by single nucleotide polymorphic allele array. Cancer Res. 2006;66(23):11172–8.

    Article  CAS  PubMed  Google Scholar 

  22. Phillips JJ, et al. PDGFRA amplification is common in pediatric and adult high-grade astrocytomas and identifies a poor prognostic group in IDH1 mutant glioblastoma. Brain Pathol. 2013;23(5):565–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Paugh BS, et al. Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J Clin Oncol. 2011;29(30):3999–4006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Engler JR, et al. Increased microglia/macrophage gene expression in a subset of adult and pediatric astrocytomas. PLoS One. 2012;7(8):e43339.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Puget S, et al. Mesenchymal transition and PDGFRA amplification/mutation are key distinct oncogenic events in pediatric diffuse intrinsic pontine gliomas. PLoS One. 2012;7(2):e30313.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Pollack IF, et al. Expression of p53 and prognosis in children with malignant gliomas. N Engl J Med. 2002;346(6):420–7.

    Article  CAS  PubMed  Google Scholar 

  27. Khuong-Quang DA, et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol. 2012;124(3):439–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Freeman CR, Perilongo G. Chemotherapy for brain stem gliomas. Childs Nerv Syst. 1999;15(10):545–53.

    Article  CAS  PubMed  Google Scholar 

  29. Raffel C, et al. Analysis of oncogene and tumor suppressor gene alterations in pediatric malignant astrocytomas reveals reduced survival for patients with PTEN mutations. Clin Cancer Res. 1999;5(12):4085–90.

    CAS  PubMed  Google Scholar 

  30. Thorarinsdottir HK, et al. Protein expression of platelet-derived growth factor receptor correlates with malignant histology and PTEN with survival in childhood gliomas. Clin Cancer Res. 2008;14(11):3386–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Brennan CW, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Mueller S, et al. PTEN promoter methylation and activation of the PI3K/Akt/mTOR pathway in pediatric gliomas and influence on clinical outcome. Neuro Oncol. 2012;14(9):1146–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008;27(41):5497–510.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Paugh BS, et al. Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Res. 2013;73(20):6219–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Bax DA, et al. EGFRvIII deletion mutations in pediatric high-grade glioma and response to targeted therapy in pediatric glioma cell lines. Clin Cancer Res. 2009;15(18):5753–61.

    Article  CAS  PubMed  Google Scholar 

  36. Gallia GL, et al. PIK3CA gene mutations in pediatric and adult glioblastoma multiforme. Mol Cancer Res. 2006;4(10):709–14.

    Article  CAS  PubMed  Google Scholar 

  37. Grill J, et al. Critical oncogenic mutations in newly diagnosed pediatric diffuse intrinsic pontine glioma. Pediatr Blood Cancer. 2012;58(4):489–91.

    Article  PubMed  Google Scholar 

  38. Bettegowda C, et al. Exomic sequencing of four rare central nervous system tumor types. Oncotarget. 2013;4(4):572–83.

    PubMed Central  PubMed  Google Scholar 

  39. Kleinschmidt-DeMasters BK, et al. Epithelioid GBMs show a high percentage of BRAF V600E mutation. Am J Surg Pathol. 2013;37(5):685–98.

    Article  PubMed  Google Scholar 

  40. Knudsen ES, Wang JY. Targeting the RB-pathway in cancer therapy. Clin Cancer Res. 2010;16(4):1094–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Barton KL, et al. PD-0332991, a CDK4/6 inhibitor, significantly prolongs survival in a genetically engineered mouse model of brainstem glioma. PLoS One. 2013;8(10):e77639.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Vazquez A, et al. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov. 2008;7(12):979–87.

    Article  CAS  PubMed  Google Scholar 

  43. Sung T, et al. Preferential inactivation of the p53 tumor suppressor pathway and lack of EGFR amplification distinguish de novo high grade pediatric astrocytomas from de novo adult astrocytomas. Brain Pathol. 2000;10(2):249–59.

    Article  CAS  PubMed  Google Scholar 

  44. Stommel JM, et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science. 2007;318(5848):287–90.

    Article  CAS  PubMed  Google Scholar 

  45. Fouladi M, et al. A molecular biology and phase II trial of lapatinib in children with refractory CNS malignancies: a pediatric brain tumor consortium study. J Neurooncol. 2013;114(2):173–9.

    Article  CAS  PubMed  Google Scholar 

  46. Broniscer A, et al. Phase I and pharmacokinetic studies of erlotinib administered concurrently with radiotherapy for children, adolescents, and young adults with high-grade glioma. Clin Cancer Res. 2009;15(2):701–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Geoerger B, et al. Phase II trial of temsirolimus in children with high-grade glioma, neuroblastoma and rhabdomyosarcoma. Eur J Cancer. 2012;48(2):253–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Geoerger B, et al. Innovative therapies for children with cancer pediatric phase I study of erlotinib in brainstem glioma and relapsing/refractory brain tumors. Neuro Oncol. 2011;13(1):109–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Pollack IF, et al. A phase II study of gefitinib and irradiation in children with newly diagnosed brainstem gliomas: a report from the Pediatric Brain Tumor Consortium. Neuro Oncol. 2011;13(3):290–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Pollack IF, et al. Phase I trial of imatinib in children with newly diagnosed brainstem and recurrent malignant gliomas: a Pediatric Brain Tumor Consortium report. Neuro Oncol. 2007;9(2):145–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Broniscer A, et al. Phase I study of vandetanib during and after radiotherapy in children with diffuse intrinsic pontine glioma. J Clin Oncol. 2010;28(31):4762–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Fouladi M, et al. Phase I trial of MK-0752 in children with refractory CNS malignancies: a pediatric brain tumor consortium study. J Clin Oncol. 2011;29(26):3529–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Gururangan S, et al. Lack of efficacy of bevacizumab plus irinotecan in children with recurrent malignant glioma and diffuse brainstem glioma: a Pediatric Brain Tumor Consortium study. J Clin Oncol. 2010;28(18):3069–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Haas-Kogan DA, et al. Phase II trial of tipifarnib and radiation in children with newly diagnosed diffuse intrinsic pontine gliomas. Neuro Oncol. 2011;13(3):298–306.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. MacDonald TJ, et al. Phase II study of cilengitide in the treatment of refractory or relapsed high-grade gliomas in children: a report from the Children’s Oncology Group. Neuro Oncol. 2013;15(10):1438–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Broniscer A, et al. Phase I trial, pharmacokinetics, and pharmacodynamics of vandetanib and dasatinib in children with newly diagnosed diffuse intrinsic pontine glioma. Clin Cancer Res. 2013;19(11):3050–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Schroeder KM, Hoeman CM, Becher OJ. Children are not just little adults: recent advances in understanding of diffuse intrinsic pontine glioma biology. Pediatr Res. 2014;75(1–2):205–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oren J. Becher M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Becher, O.J., Barton, K.L., Halvorson, K.G., McLendon, R. (2015). Pediatric High-Grade Gliomas and DIPG. In: Karajannis, M., Zagzag, D. (eds) Molecular Pathology of Nervous System Tumors. Molecular Pathology Library, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1830-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1830-0_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1829-4

  • Online ISBN: 978-1-4939-1830-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics